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Abstract: There are two forms of mechanical energy-potential energy and kinetic energy in physics. Potential energy pE  is 

stored energy of position. The amount of kinetic energy kE  possesed by a moving object is depent upon mass and speed. The 

total mechanical energy possesed by an object is the sum of its kinetic and potential energies. Now we calculate the 

mathematical physic on Joachimsthal Theorem. In this paper, we find the eneryg of two curves on different surfaces and slant 

helix strips by using classic energy formulaes in Euclidean Space E
3
.  
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1. Introduction 

Now we look what we know about the terms of the energy. 

The word ‘energy’ comes from energeia in Greek. First 

occurred in the studies of Aristoteles in 4th century B. C.  

The ‘energy’ term came from by defining Gottfried Leibniz 

that was vis viva (live force). Leibniz defined vis viva that is 

the multiplying matter's mass and its squared velocity. 

In 1807, Thomas Young used energy term as meaning of 

today instead of vis visa that was the first person. Gustave-

Gaspard Coriolis defined kinetic energy in 1829; William 

Rankine defined potential energy in 1853 as todays 

meanings. 

Energy is not only used by physicists but also by 

mathematicians.  

We know that there are two forms of mechanical energy-

potential energy and kinetic energy. Potential energy is stored 

energy of position. Such energy is known as the gravitational 

energy pE  and is calculated as 

hgmEp ..=  

where m is the mass of the object, g  is the acceleration of 

gravity (9,8m/s) and h  is the height of the object (with 

standart units of meters). Kinetic energy is defined as the 

energy possesed by an object due its motion. An object must 

be moving to possess kinetic energy. The amount of kinetic 

energy kE  possesed by a moving object is depent upon mass 

and speed. The equation for kinetic energy is  

21
.

2
kE mV=  

where m  is the mass of the object (with standard onits of 

kilograms) and V  is the speed of the object (with standart 

units of m/s). The total mechanical energy possesed by an 

object is the sum of its kinetic and potential energies as: 

T p kE E E= +  [13]. 

In this paper, we find the eneryg of two curves on different 

surfaces and slant helix strips by using classic energy 

formulaes in Euclidean Space. But a new paper may be 

studied with the same conditions in Lorentzian Space 
1

1
nE +

. 

See [14, 15]. 

2. Preliminaries 

We now review some basic concepts on classical differential 

geometry of space curves in Euclidean space, general helix and 
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slant helix. Let 3: I Rα →  be a curve ( ) 0sα ′ ≠  where 

( ) ( )T s sα ′= is a unit tangent vector of α at s and M  be a 

surface in Euclidean 3-space. We define a surface element of 

M  is the part of a tangent plane at the neighbour of the point. 

The locus of the these surface element along the curve is called 

a curve-surface pair as shown ( , )Mα . We study this 

Euclidean Space, may study in Minkowski space and 

rotational surfaces. See more details in [7, 13]. 

2.1. The Curve-Surface Pair (Strip) 

Definition: 

Let M  and α  be a surface in 
3E  and a curve in 

3M E⊂ . We define a surface element of M  is the part of a 

tangent plane at the neighbour of the point. The locus of 

these surface element along the curve α  is called a curve-

surface pair and is shown as ( , )Mα . 

Definition: 

Let , ,t n b
→ → →  
 
  

 and , ,ξ η ζ
→ → →  

 
  

 be the curve and curve-surface 

pair’s vector fields. The curve-surface pair’s tangent vector 

field, normal vector field and binormal vector field is given 

by t
→

= ξ
→

, Nζ
→ →

=  ( N n
→ →

= ) and η ζ ξ
→ → →

= ∧  ([1-6, 8-10]). 

2.2. Curvatures of the Curve-Surface Pair and Curvatures 

of the Curve 

Let , ,n g rk b k c t a= − = =  and , ,ξ η ζ
→ → →  

 
  

 be the normal 

curvature, the geodesic curvature, the geodesic torsion of the 

strip and the curve-surface pair’s vector fields on α  [1-6, 9, 

10]. 

Then we have 

.

c b

c a

b a

ξ η ζ

η ξ ζ

ζ ξ η

→ → →

→ → →

→ → →

′
= −

′
= − +

′
= −

                              (1) 

We know that a curve α  has two curvatures κ  and τ . A 

curve has a strip and a strip has three curvatures ,n gk k  and 

rt .  

Let ,n gk k  and rt  be the ,b c−  and a. From last equations 

we have c bξ η ζ
→ → →′

= − . If we substitude tξ
→ →

=  in last equation, 

we obtain 

nκξ
→ →′

=  

and 

sin

cos

= −
=

b

c

κ ϕ
κ ϕ

 

([2-6, 9, 10]) From last two equations we obtain, 

2 2 2b cκ = + . 

This equation is a relation between the curvature κ  of a 

curve α  and normal curvature and geodesic curvature of a 

curve-surface pair.  

By using similar operations, we obtain a new equation as 

follows  

2 2

b c bc
a

b c
τ

′ ′−= +
+

 

([2-6, 9, 10]). This equation is a relation between τ  

(torsion or second curvature of α  and curvatures of a curve-

surface pair that belongs to the curve α ). And also we can 

write 

= +a ϕ′ τ . 

The special case: 

If ϕ  is constant, then 0=ϕ′ . So the equation is a τ= . 

That is, if the angle is constant, then torsion of the curve-

surface pair is equal to torsion of the curve. 

Definition: 

Let α  be a curve in 
3M E⊂ . If the geodesic curvature 

(torsion) of the curve α  is equal to zero, then the curve-

surface pair ( , )Mα  is called a curvature curve-surface pair 

(strip) ([2-6, 9, 10]). 

3. General Helix 

Definition: 

Let α  be a curve in 
3E  and 1V  be the first Frenet vector 

field of α . 
3( )U Eχ∈  be a constant unit vector field. 

If 

1, cos=V U ϕ  (constant) 

α , ϕ  and { }Sp U  are called a general helix, the slope and 

the slope axis ([1, 2, 6]). 

Definition: 

A regular curve is called a general helix if its first and 

second curvatures κ  and τ  are not constant but 
κ
τ

 is 

constant ([1, 6]). 

Definition: A curve is called a general helix or cylindrical 

helix it its tangent makes a constant angle with a fixed line in 

space. A curve is a general helix if and only if the ratio 
κ
τ

 is 

constant ([5, 9, 12]). 

Definition: A helix is a curve in 3-dimensional space. The 

following parametrisation in Cartesian coordinates defines a 



 Pure and Applied Mathematics Journal 2017; 6(3-1): 1-5 3 

 

helix, see [7]. 

( ) cos

( ) sin

( ) .

x t t

y t t

z t t

=
=
=

 

As the parameter t  increases ( ( ), ( ), ( ))x t y t z t  traces a 

right-handed helix of pitch 2π  and Radius 1 about the z

axis, in a right-handed coordinate system. In cylindrical 

coordinates ( , , )r hθ  the same helix is parametrised by 

( ) 1,

( ) ,

( ) .

r t

t t

h t t

θ
=
=
=

 

Definition: 

If the curve α  is a general helix, the ratio of the first 

curvature of the curve to the torsion of the curve must be the 

constant. The ratio 
τ
κ

 is called first harmonic curvature of 

the curve and is denoted by 1H  or H . 

Theorem 3.1: A regular curve 3Eα ⊂  is a general helix if 

and only if 
1

2

( )
k

H s const
k

= =  for s I∀ ∈ , see [7]. 

Proof: ( )⇒
 
Let α  be a general helix. The slope axis of 

the curve α  is showed { }Sp U . Note that 

( ), cos .′ = =s U constα ϕ  

If the Frenet Threshold is 1 2 3, ,V V V  at the point ( )sα , then 

we have 

1( ), cos .=V s U ϕ  

If we take derivative of the both sides of the last equation, 

then we have 

1 2 2( ), 0 ( ), 0.k V s U V s U= ⇒ =  

Hence 

{ }1 3( ), ( ) .U Sp V s V s∈  

Therefore 

1 3cos ( ) sin ( ).= +U V s V sϕ φ  

U  is the linear combination of 1( )V s  and 3 ( )V s . By 

differentiating the equation 2 ( ), 0V s U = , we obtain 

1 1 2 3

1 1 2 3

1 2

( ) ( ), 0,

( ) ( ), ( ) ( ), 0,

( ) cos ( )sin 0.

− + =

− + =

− + − =

k V s k V s U

k s V s U k s V s U

k s k sφ ϕ
 

By using the last equation, we see that 

.H const=  

( )⇐  Let ( )H s  be constant for s I∀ ∈ , and tan=λ ϕ , 

then we obtain 

1 3cos ( ) sin ( ).= +U V s V sϕ ϕ  

1. If U  is a constant vector, then we have 

( )1 2 2( ) cos sin ( ) ( ).• = −D U k s k s V s
α

ϕ ϕ  

By substituting ( ) tan=H s ϕ  is in the last equation, we 

see that 

1 2( ) cos sin 0,− =k s kϕ ϕ  

and so 

.U const=  

2. If α  is an inclined curve with the slope axis { }Sp U , 

then 

1 1 3( ), ( ),cos ( ) sin ( )′ = +s U V s V s V sα ϕ ϕ  

1 1 1 3cos ( ), ( ) sin ( ), ( ) ,= +V s V s V s V sϕ ϕ  

and we obtain 

( ), cos′ = =s U constα ϕ ([7]). 

Definition: 

Let 2S  and α  be a sphere in 
3E  and a helix that lies on 

the sphere 2S . The curve α  is called a spherical helix which 

lie on the sphere [12].  

Definition: 

Let α  be a helix in 
3M E⊂ . We define a surface element 

of M  is the part of a tangent plane at the neighbour of the 

point of the helix that lie on M . Instead of the geometric 

plane of these surface elements along the helix α  which lie 

sphere M  is called a helix strip. 

Definition: 

Let 2S  be a sphere and and α  a helix which lie on 2S  in 
3E . We define a surface element 2S  is the part of a tangent 

plane at the neighbour of the point of the helix that lie on 
2S . The locus of these surface elements along the helix α  

which lie on the sphere 2S  is called spherical helix strip. 

4. Finding Energy of the Strip by Using 

Its Curvatures 

In this section we find energy of the strip by using classic 

energy formulaes T p kE E E= + .  

Now we repeat the Joachimsthal Theorems. 
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Theorem 4.1. (Terquem Theorem) Let 1M  and 2M  be the 

different surfaces in 
3E  and α  be a curve but not a planar 

curve and β  be a curve in 2M . 

i. The points of the curves α  ve β  corresponds to each 

other 1:1 on a plane ε  which rolls on the 1M  and 2M , such 

that the distance is constant between corresponding points. 

ii. 1( , )Mα  is a curvature strip. 

iii. 2( , )Mβ  is a curvature strip. 

Proof. Claim: Two of the three lemmas gives third ([10]). 

It is obviously from the Phd. thesis by Keles. 

By applying the similar way in proof of the Theorem 3.1 in 

[10] to the strip of the spherical helix strip, we give the 

following theorem. 

Theorem 4.2. (Joachimsthal Theorem) Let 
2

S  be a sphere 

and and M  be a surface in 
3E . Let the tangent planes of the 

surface M  that along the curve β  be the tangent planes of 

the sphere 
2

S  along the helix curve α  at the same time. In 

this case, if we find the energy of the strip ( , )Mβ , the curve

β  is a helix, also a helix strip. If we find the energy of the 

curve α on the spherical helix strip (
2

S , M ), we can find 

the energy of the curve β  on ( β , M ) in type of the 

curvatures of the ( β , M ) and give a characterization. 

Proof: 

 

Figure 1. The spherical helix
2

S  and the surface M . 

Now Keles’s proof help us to obtain the energy of the strip. 

If the curve α  is a helix on 
2

S , then it provides 1

1

κ
τ

 is 

constant. We have to show that β  is a helix strip on M , that 

is, 2

2

κ
τ

 is constant. 

By the Figure, we have 

1 1 1 1( ) ( ) ( ) ( )s s s sβ α λ ν
→

= +                     (2) 

where 

1 1 1( ) ( )s m r sα ζ
→

= +                            (3) 

By differentiating both side of (3), we see that 

1 1
1

1 1

.
d d

r
ds ds

α ζξ
→

= =  

By (1), 

1 1 1 11 ( )r b aξ ξ η
→

= − , 

We obtain 1 0a =  and 1 1b = . 

r  is the radius of the sphere. We denote 1r = . Since m
→

 is 

a position vector that goes to the center of the sphere, m
→

 is 

constant. 

Since 1 0α = , 
2( , )Sα  is a curvature strip. By the strips 

2( , )Sα  and ( , )Mβ  are curvature strips and by the Terquem 

Theorem, we see that λ  is non-zero constant. Let 1( )sν
→

 be a 

vector in { }1 1,Sp ξ η , and let φ  be the angle between 1ξ
→

 and 

1( )sν
→

. Then we write 

1 1( ) cos sinsν φ ξ φ η
→ → →

= +                           (4) 

By substituting (3) and (4) in (2), and differentiating both 

sides, we obtain (5). 

1 1 1
1 11

1 1 1 1 1

(cos sin )
(cos sin ) ( )

d dd d m d
s

ds ds ds ds ds

ζ φ ξ φηβ λ φ ξ η λ
→ → →→

→ → +
= + + + +  (5) 

Since the vector m
→

 and λ  are constant, we obtain the 

following equation 

1 1 1
1

1 1 1

(cos sin )
( )

d dd
s

ds ds ds

ζ φ ξ φηβ λ
→ → →

+
= +  

or 

1 1 1
1 1

1 1 1 1 1 1

( )( sin cos ) cos sin ).
d d dd d d

s
ds ds ds ds ds ds

ζ ξ ηβ φ φλ φ ξ φ φη φ
→ →

→ →
= + − + + +

 

By (1), we obtain 

1 1 1 1 1
1 1 1

1 ( )sin ( )cos cos
d d d

c c
ds ds ds

β ϕ φλ φ ξ λ φη λ φ ζ
→ → → 

= − + + + − 
 

 (6) 

This 
d

ds

β
 is the velocity of the curve.  

Since the spherical helix and the surface M  have the same 

tangent plane along the curves α  and β , we can write 

1
1

, 0
d

ds

β ζ
→

= . 
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By substituting (6) at the last equation, we obtain 

cos 0φ = . By using that equation in (6), we have 

1 1
1

(1 )
d

c
ds

β λ ξ
→

= ±                          (7) 

Since the same result is obtained by using other form of 

(7), we use the form 1 1
1

(1 )
d

c
ds

β λ ξ
→

= −  of (7) at the rest of 

our proof. By differentiating both sides of (7), we obtain 

1 1 1
1

(1 ) ( / )
d

V c meter s
ds

β λ ξ
→

= = −  

Now calculate the kE  of the slant helix, 

Special case:  

Take 1m = kg, so 

2
2 2 2 2 21

1 1 1 1

1 1
. .1( ).[(1 ) ( / )] (1 2 )( / ).

2 2 2
kE mV kg c m s c c kgm s

ξλ ξ λ
→

= = − = − −  

Now calculate the pE  of the slant helix, 

Take 1m = kg and 2 2.1 2h r meters= = =  

)/(6,19)(2)./(8,9).(1.. 222 skgmmsmkghgmE p ===  

So the total energy is  

Total p kE E E= + = 2 219,6( / )kgm s +
2

2 2 21
1 1(1 2 )( / )

2
c c kgm s

ξ λ− −  

TotalE =

2
2 2 21

1 119,6 (1 2 ) ( / )
2

c c kgm s
ξ λ

 
+ − −  

 
 

We will use this equations for finding energy of the strip 

on Joachimsthal theorem by using its curvatures. 
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