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Abstract: In the last century, especially in the last half of the century, there was the paradigm of sectionalism prevailing and 
sciences and engineering were divided into very small parts which are mutually independent. It was like in Babel where there was 
no common language to communicate. The purpose of this paper is to present one of the possible glues—the notion of Cartesian 
product—to stick some remotely separated parts of science and engineering together. This concept appears in various places and 
it will turn out that it can unify the scattered notions quite well. Our two main objectives are the interpretation of cyclic codes as 
polynomials and nested PSO. We make clear the meaning of polynomials through Cartesian product or rather as terminating 
formal power series. The latter, formal power series, is not touched in engineering disciplines but is quite useful in unifying and 
interpreting various notions. In particular, it will make clear the meaning of addition of polynomials. This reminds us of 
topologization of adéles. PSO (Particle Swarm Optimization), a developed form of genetic algorithm, has come to our attention 
through the papers [4], [23] and [24]. In [4], the PSO is used to find optimal choice of parameters in the FOPID. In other two 
papers, PSO algorithm is used in cell balancing in the Lithium-ion battery pack for EV’s. Motivated by the passage on [3] that the 
stability is preserved by the Cartesian product of many copies of the attractor, we may conceive of the nested PSO. 
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1. Introduction 
The book [5] begins with the passage  
“In November 1619, René Descartes, a 

twenty-three-year-old Frenchman, dreamed of a world unified 
by mathematics, a world in which all intellectual matters could 
be dealt with rationality by logical computation. 18 years since 
then he wrote the most famous book ‘Discourse’.”  

In [9, p.25] the author refers to the “great Cartesian Theater,” 
meaning apparently the notion of reason as described by 
“ Cogito ergo sum.”  

In this paper we are mainly concerned with his 
mathematically most important invention of coordinates, 
Cartesian product. This is so fundamental that in engineering 
disciplines there is misunderstanding that it is so trivial. 
However, we note that the mathematically trivial fact to the 
effect that the matrices, which are again thought of very 
common and trivial, are just coordinates and are regarded as 
embedded in the Cartesian product is not well conceived by 
engineers. This can be perceived when one introduces the 
distance (norm) of two matrices. The range of applicability of 
Cartesian products is so wide and diverse that we will glimpse 

just part of it by concrete examples.  
In [3,p.44], in relation to homeostasis, a chemo-dynamical 

stability of a cell in a variable environment, a description is 
made of the equilibrium after replication. The cell is brought 
out of a stable regime, to become, dynamically speaking, an 
attractor, and the stability after replication is regained in a 
different framework: the dynamical features of the system 
reappear in the multiplicity of nearly identical cells 
represented by the Cartesian product of many copies of the 
attractor, and ensures the information by perpetuation.  

Another instance is, surprisingly from the EV control by 
PSO—Particle Swarm Optimization. For details, cf. §6. A 
swarm is the battery stack consisting of � = 180 ∼ 216 
particles and each particle is a cell and a particle searches in 
the search space ℝ
 with � = 36 for its best position 3.6�. 
As mentioned in [2], there is needed the balancing of blocks to 
obtain the optimal output power. For this we introduce the 
notion of regiment, which is a nested PSO. This new concept 
is taken from the above-mentioned Carbone-Gromov 
description as well as the ideas of Schoenheimer on life to the 
effect that it is a dynamic state of body constituents [20], 
where a simile is given of a military regime and an adult body.  
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2. Cartesian Product 

As is often the case, whenever one needs to construct a real 
entity which corresponds to an abstract system, one appeals to 
the Cartesian product (direct product), or the coordinates 
(sequences).  

Definition 1. Let �  be an arbitrary index set and let �� (� ∈ �) be a family of sets indexed by �. Let � be a 
function from �to �� (� ∈ �). Then we denote the function 
as  � = (��) = (��)�∈�            (2.1) 

and we often refer to this as coordinates or a sequence in case 
when � is a countable set. We denote all such functions � by  ∏ �� = ∏ ���∈� = {(��)�∈�}        (2.2) 

and refer to it as the Cartesian product (or direct product) of �� (� ∈ �).  
Two functions with the same domain and region coincide if 

and only if each of their values coincide, which means that two 
sequences (��) and (��) coincide if and only if �� = �� for 
each � ∈ �. In the case where �� (� ∈ �) are some algebraic 
systems with identity ��, then we denote the subset of ∏ �� 
consisting of those all but finite number of whose entries are 
the identities by ∏ �� and refer to it as the direct sum. 

Example 1. If in (2.2), all the ��’s are Abelian groups with 
unity (very often denoted 0�), then the Cartesian product (2.2) 
becomes an Abelian group with respect to componentwise 
addition:  (��) + (��) = (�� + ��) for each � ∈ Λ       (2.3) 

with the identity (0�).  
Example 2. If in (2.2), all the �� ’s are rings, then the 

Cartesian product (2.2) becomes a ring with respect to 

componentwise addition and multiplication: (��) + (��) = (�� + ��),  (��)(��) = (����),  for each � ∈ Λ. (2.4) 

In the following examples we shall give four different 
constructions of the complex number field. The first two uses 
the Cartesian product while the fourth one is of algebraic 
nature. The third construction depends on the quotient field of 
the polynomial ring and one could say that this is also related 
to the Cartesian product through identification of polynomials 
and coordinates.  

Example 3. Consider the 2-dimensional space  ℝ( = {) = (*, +)|*, + ∈ ℝ}  

and introduce the componentwise addition (translation) and 
the new multiplication ∗ for ). = (*. , +.),  / = 1,2 by  )0 ∗ )( = (*0*( − +0+(, *0+( + *(+0).     (2.5) 

Then (ℝ(, +,∗) forms a field, which we refer to as the field 
of complex numbers and denote ℂ.  

To prove this we note that ) = (*, +) = 3 = (0,0) if and 
only if (*, +) = (0,0), i.e. if and only if ) = 3, i.e. if and 
only if |)| = 4*( + +( = 0. Hence for each ) ≠ 3, there 

exists the inverse element )60 = 0789:8 (*, −+) = 0|;|8 )̄ , 

where )̄ = (*, −+), so that )60 ∗ ) = ;;̄|;|8 = 1. 

Example 4. Consider the 2-dimensional subspace of the 4-dimensional real vector space  > = {) = (*, −+, +, *)|*, + ∈ ℝ} ⊂ ℝ@ 

and introduce the componentwise addition (translation) and 
the new multiplication × for )B = (*B , −+B , +B , *B), C = 1,2 

)0 × )( = (*0*( − +0+( , −(*0+( + *(+0), *0+( + *(+0, *0*( − +0+().                 (2.6) 

Then (>, +,×) forms a field isomorphic to ℂ.  
Let ℝ[�]  denote the ring of all polynomials with real 

coefficients, where the polynomial ring is nothing other than 
the direct sum ∑ ℝ of infinitely many copies of ℝ(see below).  

Example 5. Let C denote a root (in the algebraic closure of ℝ  provided that it exists) of the irreducible polynomial �( + 1over ℝ, irreducible because for any real number G, G( + 1 > 0  and �( + 1  cannot be decomposed into a 
product of linear factors. The adjointℝ(C) = {� + �C|�, � ∈ℝ} is a field, which is seen to be isomorphic to ℂ.  

Example 6. Let ℝ[�] denote the ring of all polynomials 
with real coefficients, where the polynomial ring is nothing 
other than the direct sum ∑ ℝ (see below). Let C denote a 
root of the irreducible polynomial �( + 1over ℝ, irreducible 
because for any real number G, G91 > 0 and �( + 1 cannot 
be decomposed into a product of linear factors.  

The factor ring ℝ[�]/(�( + 1)  forms a field which is 
isomorphic to the adjoint ℝ(C) = {� + �C|�, � ∈ ℝ}  in 
Example 5.  

Proof. We may directly prove the assertion in Example 6 as 
follows. Since  

ℝ[�]/(�( + 1) = {� + ��  mod    (�( + 1)|�, � ∈ ℝ},  

we may prove that the mapping � + �� → � + �C is a field 
isomorphism.  

In the multiplication (�0 + �0�)(�( + �(�) = �0�( +�0�(�( + (�0�( + �(�0)�, we are to replace �( + 1 by 0, 
i.e. �(  by −1  to obtain (�0 + �0�)(�( + �(�) = �0�( −�0�( + (�0�( + �(�0)� which corresponds to the operation (�0 + �0C)(�( + �(C) = �0�( + �0�(C( + (�0�( + �(�0)C , 
wherein we are to replace C( by −1.  

3. Formal Power Series 

It often happens that beginners find difficulties in following 
the argument that in place of code words one considers the 
corresponding polynomials. The difficulties come from a 
non-thorough interpretation of cyclic codes as polynomials, 
which in turn arises from the fact that polynomials are not well 
understood.  

Our objective is to present the concept that the polynomial 
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ring may be thought of as the Cartesian product of infinitely 
many copies of the ring of scalars with only finitely many 
non-zero components, whose elements may therefore be 
written in the form of polynomials.  

3.1. Formal Power Series Rings 

Let N be a commutative ring with unity 1. In Example 2, 
we choose the index set to be ℕ ∪ {0} (or any countable set, 
say ℕ ). Then the Cartesian product ∏ NQ.RS = {T =(TS, T0, ⋯ )|T. ∈ N} of infinitely many copies of N forms a 
ring under componentwise addition and multiplication with 
unity.  

Let � denote an indeterminate and we view the element T = (TS, T0, ⋯ ) as a formal power series T = T(�) = TS + T0� + ⋯.          (3.1) 

The set of all the formal power series over N is denoted by  N[[�]] = {TS + T0� + T(�( + ⋯ |T. ∈ N}     (3.2) 

on which there are defined componentwise addition and the 
new Cauchy product as multiplication: For two formal power 
series G(�) = �S + �0� + �(�( + ⋯, we define  G(�) + V(�) = �S + �S + (�0 + �0)� + ⋯, G(�)V(�) = �S�S + (�S�0 + �0�S)� + ⋯ + T.�. + ⋯, (3.3) 

The scalar product by elements of N may be defined as  TG(�) = T�S + T�0� + ⋯.             (3.4) 

With these operations N[[�]] forms an N-module as well 
as a ring (i.e. an algebra), called the formal power series ring.  

3.2. Polynomial Rings 

A polynomial W is a terminating formal power series, i.e. a 
sequence with all but finite number of coordinates being 0. 
Therefore there exits the maximal index X ∈ ℕ ∪ {0} such 
that TY ≠ 0, T. = 0,  / > X + 1:  W = (TS, T0, ⋯ , TY, 0,0, ⋯ ),        (3.5) 

which, correspondingly to (3.1), may be expressed as  W = TS + T0� + T(�( + ⋯ + TY�Y      (3.6) 

called a polynomial of degreeX (denoted: deg W = X). TY is 
called the leading coefficient.  

3.3. Polynomial Functions 

Let \/N be a ring extension and let ](�) = TS + T0� +⋯ + TY�Y ∈ N[�]with TY ≠ 0. Then for an element G ∈ \, 
the expression TS + T0G + ⋯ + TYGY  is an element of \ , 
which we may write ](G) and we call the process of forming ](G)  from ](�) substitution of G  in the variable �  with ](G) being called the value of ](�) at G. In particular, if ](G) = 0, then G is called a root of ]. If we fix ] ∈ N[�] 
and let G ∈ \  vary, then we obtain a function ] ∈ ℱ(\) , 
which is called a polynomial function. 

Theorem 3.1. (Polynomial function)If N  is an integral 
domain with infinitely many elements, then we may identify 
the polynomial and the polynomial function.  

Cf. Example 7.  
The following lemma is the fundamental theorem in finite 

field theory.  
Lemma 3.1. (i) For any prime power _ = `a, there exists a 

unique finite field bc with _ elements, which is a splitting 
field of �c − � and bc× is a cyclic group of order _ − 1.   

(ii) For any � ∈ ℕ, there exists a unique extension bcd of bc of degree �. The extension bcd/bc is a cyclic extension 
and the Galois group is generated by e  such that Gf =Gc (∀G ∈ bcd).  

Example 7. Let p be a prime. Then by Theorem 3.1, (i), the 
Fermat little theorem holds true: Gh60 = 1, 0 ≠ G ∈ GF(`) = ℤ/`ℤ,     (3.7) 

whence Gh = G  and so the polynomial function ](G) =Gh − G is a zero map although the polynomial ](�) = �h −� is a non-zero polynomial of degree `.  
Example 8. Let ` be a prime. We take up Example 7. By 

the Fermat little theorem (Theorem 3.1, (i)) we have the 
decomposition  �h60 − 1 = ∏ (Slm∈ℤ/hℤ � − G) = ∏ (h60.RS � − /).  (3.8) 

Hence comparing the constant term, we obtain  (` − 1)! ≡ −1   mod   `,             (3.9) 

which is called Wilson’s theorem.  

4. Polynomials and Code Words 
Our objective in this section is to elucidate somewhat vague 

situation surrounding the (cyclic) code and the corresponding 
polynomial. As is shown in §3.2, polynomials are rewriting of 
the coordinates. But this interpretation does not seem well 
perceived in engineering disciplines and it happens that 
beginners find difficulties in following the argument that in 
place of code words one considers the corresponding 
polynomials. We elucidate this situation by the following  

Definition 2. To each codewordT = (TS, T0, ⋯ , TY60) ∈ pc, 
by the very definition, there corresponds the polynomial T(�) = TS + T0� + ⋯ + TY60�Y60  called the code 
polynomial and we identify them. We also write `q(�) =(TY60, T0, ⋯ , TS) = TY60 + TS� + ⋯ + TY6(�Y60 , which is 
the representor ̀q(�). 

This clarifies the setting in many papers including [6], [11], 
[12], etc.  

5. Cyclic Codes 

In this section we present the theory of cyclic codes in the 
language of polynomials (GF(_)[�]/(�Y − 1)). In the first 
subsection we appeal to the structure theorem of the factor 
ring of the polynomial ring over a field modulo a polynomial 
to the effect that it is a PID and such is the factor ring. Here we 
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need the notion of equivalence classes in addition to that of 
polynomials or Cartesian products.  

5.1. Argument Depending on the PID Structure 

In this subsection we need the following facts.  
Theorem 5.1. (Euclidean division)The polynomial ring over 

an integral domain is a Euclidean ring. More concretely, let ], r ∈ N[�] and let the leading coefficient of r lies in N×. 
Then there exist polynomials s, _ ∈ N[�] such that  ](�) = r(�)_(�) + s(�)            (5.1) 

with t�r s < t�r r. If N  is an integral domain, then _, s 
are uniquely determined.  

Theorem 5.2. (Euclidean →  PID →  UFD)A Euclidean 
domain is a principal ideal domain (PID). A PID is a unique 
factorization domain (UFD). Hence a Euclidean domain is 
UFD, and a fortiori, the polynomial ring is a UFD.  

Definition 3. Let v be a linear code ⊂ wp(_)Y. If for any 
of its element x,  x = (TS, T0, ⋯ , TY60) ∈ v ⇒ `(x): = (TY60, TS, ⋯ , TY60) ∈ v 

(5.2) 

holds (hence all shifts belong to v by induction), then v is 
called acyclic code.  

Example 9. (i)  v0 = {(0,0,0), (1,1,0), (1,0,1), (0,1,1)}    (5.3) 

is a cyclic code.   
(ii) Let v( be a binary linear code given by its parity check 

matrix  

{( = |1011100(19)1110010(20)0111001(21)~ = (−��, �).   (5.4) 

The generating matrix w( for v( is seen to be  

w( = �1000110(23)0100011(24)0010111(25)0001101(26)�,             (5.5) 

It is well-known that the theory of cyclic codes can be 
described most clearly in terms of the polynomials (or more 
naturally, we identify a codeword with its code polynomial; cf. 
Theorem 5.3). Hereafter we let p be a field (finite or not) and 
let p[�]  denote the ring of all the polynomials with 
coefficients in p , with �  an indeterminate. However, 
whenever we speak of codes, the field is to be thought as finite: p = bc. Some basic notions needed to follow the subsequent 
argument may be found in [10, §1.5], which also serves as a 
source for preceding sections. The main ingredient is Theorem 
5.2 to the effect that a polynomial ring over a field is a PID, 
which entails the following  

Proposition 5.1. Let � = �(�) be a non-zero polynomial 
in p[�] with coefficients in a field p. Then the factor ring p[�]/(�(�)) = {]�|] = ](�) ∈ p[�]} is a PID. Moreover, it 

is generated by a divisor ℎ = ℎ(�) of �(�) : p[�]/(�(�)) = (ℎ(�)), where ℎ(�) may be chosen to be monic.  
Proof. Let � be an ideal of p[�]/(�(�)). Let � = {](�) ∈][�]|]� ∈ �}. Then we may show that � is an ideal of p[�]. 

Hence it must be a principal ideal, say � = (ℎ(�)) with a 
polynomial ℎ(�) ∈ p[�]. Then clearly � = (ℎ� ).  

Note that since �(�) = 0� ∈ � , it follows that �(�)  is 
divisible by ℎ(�), i.e. ℎ is a divisor of �. If the leading 
coefficient of ℎ(�)is T� ≠ 0, then we may use T�60ℎ(�) as a 
generator of p[�]/(�(�)).   

Proposition 5.2. In the factor ring p[�]/(�(�)), where t�r � = X ≥ 1, a complete set of residues is given by the 
residues modulo �(�):  

p[�]/(�(�)) = {s(�)|s(�) ∈ p[�],  deg s < X} 
= {Tq + T0� + ⋯ + TY60�Y60|T� ∈ p}. (5.6) 

Proof. For any polynomial ] = ](�) , we have by the 
Euclidean algorithm,  ] = �_ + s,  _, s ∈ p[�],  deg s < X,    (5.7) 

whence ]� = s̄ . Further, if deg s < X, deg � < X , then deg( s − �) < X, and so s − � ∉ (�). Hence s̄ ≠ �̄. Hence 
the given set is a complete set of residues modulo �(�).   

Definition 4. For each codewordT = (TS, T0, ⋯ , TY60) ∈ pc, 
we correspond the polynomial T(�) = TS + T0� + ⋯ +TY60�Y60  called thecode polynomialand we identify them. 
We also write `q(�) = (TY60, T0, ⋯ , TS) = TY60 + TS� +⋯ + TY6(�Y60, which is the representor.  

Theorem 5.3. In Definition 2, we may identify the 
codeword and the code polynomial by the embedding 

]: v → p[�];  ]((TS, T0, ⋯ , TY60)) = TS + T0� + ⋯ + TY60�Y60. (5.8) 

Proof. With the Cauchy product (3.3), the polynomials form 
a ring. The mapping in (5.8) is a linear monomorphism and so v may be identified with its image ](v) = {TS + T0� + ⋯ +TY60�Y60|T� ∈ p}.   

Lemma 1. We have  `x(�) = �x(�) − TY60(�Y − 1) ≡ �x(�) mod    (�Y − 1). (5.9) 

This Lemma motivates one to consider the factor ring p[�]/(�Y − 1)  whose elements are T(�) = TS + T0� + ⋯ + TY60�Y60. Lemma 1 means  

�� TS + T0� + ⋯ + TY60�Y60 = TY60 + TS� + ⋯ + TY6(�Y60,  

where the right-hand side corresponds to the shift (TY60, TS, ⋯ , TY6(). By induction, we have  

�B  TS + T0� + ⋯ + TY60�Y60= TY6B + TY6B90� + ⋯ + TY6B60�Y60, 
which corresponds to the Cth shift. Hence if all these residue 
classes belong to v, then v is a cyclic code.  

The following two theorems are fundamental in the theory 
of cyclic codes.  
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Theorem 5.4. Suppose v is a linear code ⊂ pY and let  

� = {x(�)|x ∈ v}.  

Then v  is a cyclic code if and only if � is an ideal of p[�]/(�Y − 1).  
Proof. Suppose v  is a cyclic code and let T = (TS, T0, ⋯ , TY60),   T� = (TS�, T0�, ⋯ , TY60�)  be arbitrary codewords. Then T(�) ± T�(�)  corresponds to x ± x� , so that the sum and 

difference belong to v. For any � ∈ p, the polynomial �̄x(�) 
corresponds to �x. By Lemma 5.1, for any power of �, we 
have �B  x(�) ∈ v. Hence for any element �(�) ∈ p[�], we 

have �(�) x(�) ∈ �. Hence � is an ideal of p[�]/(�Y − 1).  
Conversely, if � is an ideal of p[�]/(�Y − 1), then for any x(�) ∈ v , we have �� x(�) ∈ v , which means that that the 

shift (TY60, TS, ⋯ , TY6() ∈ v  and hence all the shifts also 
belong to v, which means that v is a cyclic code.   

Theorem 5.5. If a linear code v ⊂ pY is a cyclic code, then 
there exists a unique monic divisor r = r(�)  of �Y − 1 
such that  v = {T ∈ pY|T(�) is a multiple of r(�)}.   (5.10) 

Conversely, if there is such a r, then v is a cyclic code. 
Moreover, we have  dim � v + deg r = X.           (5.11) 

Proof. If v is a cyclic code, then the set � in Theorem 5.4 is 
an ideal, which in view of Proposition 5.1, must be principal, 
say � = (r(�))  with a monic r(�) ∈ p[�]  which is a 
divisor of �Y − 1. Hence v is given as (5.10).  

We turn to the proof of (5.11). Let deg r = � . Recall 
Proposition 5.2 giving a complete set of residues modulo �Y − 1. Then we see that for x belongs to v, it is necessary 
and sufficient that  

x(�) = r(�) _(�),           (5.12) 

where deg _ < X − � . I.e. that x(�) = r(�)s(�) with s(�) = TS + T0� + ⋯ + TY6�60�Y6�60 . Since there are _Y6� choices for the coefficients T��, we have ♯v = _Y6�. I.e. 
(5.11) holds true.  

Conversely, if there is a r for which (5.10) holds true, then 
the set � in Theorem 5.4 is (r(�)), a principal ideal. Hence 
by Theorem 5.4, v is a cyclic code. 

Definition 5. The unique polynomial r(�)|(�Y − 1) 
given in (5.10) is called agenerating polynomialof the cyclic 
code v . v is then called a cyclic code with the generating 
polynomialr.  

Hence, by examining the divisors of �Y − 1, we may study 
the cyclic codes.  

Note that the argument given above is an structural 
counterpart of the argument of [7]. In the latter, a more 
constructive and elementary way is adopted relying on the 
existence of the minimal polynomial.  

6. PSO 
PSO, Particle Swarm Optimization, is a 

biologically-inspired stochastic optimization technique 
arising from the family of evolutionary computation and gives 
better solutions than GA (Genetic Algorithm). In the original 
version of PSO due to Kennedy and Eberhart [15], a swarm 
consists of � particles moving around a prescribed �-dimensional search space. The �-th particle is denoted by �� = (*�0, ⋯ , *�
),  1 ≤ � ≤ �  whose best previous 
solution (pbest) is denoted by �� = ( �̀0 , ⋯ , �̀
), while the 
best solution (gbest) achieved by the whole swarm is denoted 
by �� = �`�0, ⋯ , `�
�. The current velocity (rate of change 
of its position) of the � -th particle is denoted by �� =( �0, ⋯ ,  �
).  

At each step, each particle moves toward the pbest and 
gbest locations. In the improved PSO, particles are 
manipulated by the following equations   �¡(/ + 1) = ¢ �¡(/) + T0ℜ0( �̀¡ − *�¡(/))+ T(ℜ(�`�¡ − *�¡�, 
*�¡(/ + 1) = (1 − �T)*�¡(/) + �T �¡(/ + 1), 1 ≤ � ≤ �,  1 ≤ t ≤ �,  

(6.1) 

where T0  resp. T(  are positive constants called cognitive 
learning rate resp. social learning rate, ¢ is a time decreasing 
inertia factor (weight), s�Xt  is a random function with 
values in [0,1], and �T is a momentum factor. The velocity 
of the particles is limited to [�¤¥¦, �¤§¨] and �¤¥¦ =�¤¥¦, �¤§¨ = �¤§¨.  

In [4], fractional calculus which can provide traditional 
PIDs with a novel and higher performance at the sacrifice of 
increased complexities arising from specifications of the 5 
parameters including integral and derivative orders. An 
intelligent optimization method can be used for designing it 
which make use of PSO.  

A swarm is the battery stack consisting of � = 180 ∼ 216 
particles and a particle searches in the ℝ
 with � = 36 for 
its best position 3.6� . A typical block of cells is a series 
(cascade) connection of 12 cells combined as a 3 parallel 
array: 3�12\.  

The � -th particle is denoted by *.(©) = �*.0(©), ⋯ , *.
(©)�, 1 ≤ / ≤ � , and *.¡(©) 
indicates the amount of charge at time ©. The velocity of each 
particle is the charging time to its full load. As in [23], at the 
battery screening test, the minimum charging time will 
become known and it is the value of the �¤¥¦ = ª«¬�  in [23].  

We consider the stochastic process  *�(/ + 1) = (1 − �T)*�(/) + �T �(/ + 1),   (6.2) 

or 

*�(/ + 1) = (1 − �T − Λ0ℜ0 − Λ(ℜ(*�(/) + (�T + ¢) �(/ + 1) + v� ,                   (6.3) 
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where v� = Λ0ℜ0�­a��,� − Λ(ℜ(w­a�� . 
6.1. Nested PSO 

In the problem considered by us, we have a stack of 5-8 
blocks of batteries connected in series. Hence these blocks 
will in turn be the particles in our swarm. The problem here is 
that the position and the velocity of each block is not known. 
The block consists of 3-4 parallel arrays of a connection of 12 
cells connected in series. Now the position values of these 
cells inside a block define the position vector of the block and 
their individual position values are itself governed by the PSO 
algorithm in the swarm of cells. Thus basically the PSO 
algorithm has been nested here. First we need to apply the 
algorithm for the cells connected in series inside a block so as 
to be able to define the position vector for the block. When we 
have the position vector of the components of the block, then 
we apply the algorithm on the block with these values of the 
position of its constituents.  

Theorem 6.1. (A speculation) Homeostasis –chemo 
-dynamical stability after replication of cells as well as PSO 
algorithms may be though of as nested Cartesian product 
under suitable interpretation of the stochasticity.  

6.2. Optimization Criteria and a Fitness Function 

Two optimization criteria are often used ITAE and ISE, 
which are short-hands for integral of time-weighted absolute 
error and integral of squared error:  ®0 = ¯ |QS �(©)| d©,  ®( = ¯ |�(©)|(QS  d©.    (6.4) 

The finite part of these mean values is a link that connects 
control theory and number theory, in the latter of which an 
essential role is often played by the mean square estimate, i.e. 
an asymptotic behavior of the finite part ®((*) = ¯ |�(©)|(7S  d© . Cf. also [22] for finite power 
signals.®0 is feasible to good response but its selection 
performance is not good, while ®( can track errors quickly but 
easily lead to oscillation. In [4], [24], the weighted 
combination of ITAE and the (square of) control input:  ® = ¯ (¢0|�(©)| + ¢(°((©))QS  d©,         (6.5) 

where 0 < ¢� < 1 (¢0 = 0.99,  ¢( = 0.001 is used). Then 
the fitness function is 1/®. 
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