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Abstract: In the last century, especially in the last halftef century, there was the paradigm of sectiomatisevailing and
sciences and engineering were divided into veryllgrags which are mutually independent. It wag lik Babel where there was
no common language to communicate. The purpodgspéaper is to present one of the possible glubs-rotion of Cartesian
product—to stick some remotely separated partsiefise and engineering together. This concept apfreaarious places and
it will turn out that it can unify the scatteredtioms quite well. Our two main objectives are thierpretation of cyclic codes as
polynomials and nested PSO. We make clear the mgaxii polynomials through Cartesian product or eatts terminating
formal power series. The latter, formal power serig not touched in engineering disciplines bupige useful in unifying and
interpreting various notions. In particular, it Whake clear the meaning of addition of polynomidltis reminds us of
topologization of adéles. PSO (Particle Swarm Ojz@tion), a developed form of genetic algorithms bame to our attention
through the papers [4], [23] and [24]. In [4], B8O is used to find optimal choice of parameterthénFOPID. In other two
papers, PSO algorithm is used in cell balancirtgérLithium-ion battery pack for EV’s. Motivated by passage on [3] that the
stability is preserved by the Cartesian produehahy copies of the attractor, we may conceive efrthsted PSO.

Keywor ds. Cartesian Product, Formal Power Series, Cyclic §0B80 Algorithm, Nested PSO

1. Introducti just part of it by concrete examples.
. Introduction In [3,p.44], in relation to homeostasis, a chemaalyical
The book [5] begins with the passage stability of a cell in a variable environment, asdéption is
“In November 1619 René Descartes amade of the equilibrium after replication. The delbrought
twenty-three-year-old Frenchman, dreamed of a wanitied out of a stable regime, to become, dynamically lpea an

by mathematics, a world in which all intellectuaitters could atractor, and the stability after replication is regainedai

be dealt with rationality by logical computatio yiears since different framework: the dynamical features of tyestem
then he wrote the most famous book ‘Discourse’.” reappear in themultiplicity of nearly identical cells

In [9, p.25] the author refers to the “great Cage heater,” represented by th€artesian product of many copies of the

meaning apparently the notion of reason as destriye attractor, and ensures the information by perpetmat
“ Cogito ergo sum.” Another instance is, surprisingly from the EV cohtby

In this paper we are mainly concerned with hid® SO—Particle Swarm Optimization. For details, . &

mathematically most important invention of coordem SWarm is the battery stack consisting @f= 180 ~ 216

Cartesian product. This is so fundamental thanigireering  Particles and eacg particle is a cell and a partelarches in
disciplines there is misunderstanding that it is tewial. e Search spad®” with D = 36 for its best positiors.6V'.

However, we note that the mathematically triviaitfto the AS mentioned in [2], there is needed the balanofrigocks to

effect that the matrices, which are again thoughvery ©btain the optimal output power. For this we introd the
common and trivial, are just coordinates and aganged as notion ofregiment, which is a nested PSO. This new concept

embedded in the Cartesian product is not well deedeby 1S taken from the above-mentioned Carbone-Gromov
engineers. This can be perceived when one intradtive description as well as the ideas of Schoenheimdifeoto the

distance (norm) of two matrices. The range of appility of ~ ffeCt that it is a dynamic state of body constitse[20],
Cartesian products is so wide and diverse that ilglimpse where a simile is given of a military regime andaatult body.
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2. Cartesian Product

As is often the case, whenever one needs to cahstmeal
entity which corresponds to an abstract systemappeals to
the Cartesian product (direct product), or the domtes
(sequences).

DescabBesam: Cartesian Products

componentwise addition and multiplication:

(an) + (by) = (ayr + by),
(ay)(by) = (ayby,), for each 4 € A.

(2.4)

In the following examples we shall give four difet

Definition 1. Let A be an arbitrary index set and letconstructions of the complex number field. Thetfiveo uses

X, (A € A) be a family of sets indexed hy. Let a be a

the Cartesian product while the fourth one is afehtaic

function from Ato X, (1 € A). Then we denote the function nature. The third construction depends on the gobfield of

as

a=(ay) = (@) aea (2.1)

and we often refer to this as coordinates or aesscpiin case
when 4 is a countable set. We denote all such functiornsy

[1X) = [laea X2 = {(@)1en} (2.2)

and refer to it as the Cartesian product (or dipeotuct) of
X, (A€ ).

Two functions with the same domain and region admd
and only if each of their values coincide, whicham&that two
sequencega;) and (b;) coincide if and only ifa; = b, for
each € A. In the case wherg, (1 € A) are some algebraic
systems with identitye;, then we denote the subset[¢fx;
consisting of those all but finite number of whasegries are
the identities by[] X, and refer to it as the direct sum.

Example 1. If in (2.2), all theX,’s are Abelian groups with

unity (very often denoted,), then the Cartesian product (2.2)where z = (x, —y), so thatz™* xz = z
becomes an Abelian group with respect to comporisatw

addition:

(ap) + (b)) = (ay + by) for each L€ A (2.3)

with the identity (0,).
Example 2. If in (2.2), all theX;’'s are rings, then the
Cartesian product (2.2) becomes a ring with resgect

Zy X Zy = (XX = Y1Y2, —(X1Y2 + X2Y1), X1 Y2 + X2Y1, X1 X5 — Y1Y2)-

Then (M, +,x) forms a field isomorphic te.

Let R[X] denote the ring of all polynomials with real

coefficients, where the polynomial ring is nothiotper than
the direct sumy. R of infinitely many copies ofR(see below).

Example 5. Let j denote a root (in the algebraic closure of

R provided that it exists) of the irreducible polynial
X? + 1over R, irreducible because for any real numlgr
a’+1>0 and X2
product of linear factors. The adjoRtj) = {a + bj|a, b €
R} is a field, which is seen to be isomorphicto

Example 6. Let R[X] denote the ring of all polynomials
with real coefficients, where the polynomial rirgnothing
other than the direct sufiR (see below). Lej denote a
root of the irreducible polynomiat? + 1over R, irreducible
because for any real number «*1 > 0 and X% + 1 cannot
be decomposed into a product of linear factors.

The factor ringR[X]/(X* + 1) forms a field which is
isomorphic to the adjointR(j) = {a + bjla,b € R} in
Example 5.

+ 1 cannot be decomposed into ap p
172

the polynomial ring and one could say that thials® related
to the Cartesian product through identificatiopofynomials
and coordinates.

Example 3. Consider the-dimensional space

R? = {z = (x,y)|x,y € R}

and introduce the componentwise addition (trarmftand
the new multiplication« for z, = (x;,yx), k = 1,2 by

Zy * Zy = (XX — Y1Y2, X1Y2 + X2)1)- (2.5)

Then (R?, +,x) forms a field, which we refer to as the field
of complex numbers and denate

To prove this we note that = (x,y) = o = (0,0) if and
only if (x,y) = (0,0), i.e. if and only ifz = o, i.e. if and
only if |z] = /x2 +y2 = 0. Hence for eacle # o, there

. . 1 1 _ 1 _
exists the inverse element™ = 21y (x,—y) = WZ ,
Z

|z|2
Example 4. Consider the2-dimensional subspace of the
4-dimensional real vector space

M={z=(x,—y,yx)|xy€R} cR*

and introduce the componentwise addition (trarmmtand
the new multiplicationx for z; = (x;, —y;, y;, x;),j = 1,2

(2.6)

R[X]/(X? + 1) = {a + bX mod (X?+ 1)|a,b € R},

we may prove that the mapping+ bX — a + bj is a field
jisomorphism.

In the multiplication (a; + b;X)(a, + b,X) = a;a, +
bb,X? + (a;b, + a,b;)X, we are to replac&? + 1 by 0,
i.e. X2 by —1 to obtain (a; + b;X)(a, + b,X) = a,a, —

+ (a;b, + a,b,)X which corresponds to the operation
(a1 + bij)(az + byj) = aya, + bibyj* + (arby + azby)j
wherein we are to replagé by —1.

3. Formal Power Series

It often happens that beginners find difficultiadallowing
the argument that in place of code words one censithe
corresponding polynomials. The difficulties comenfr a
non-thorough interpretation of cyclic codes as polyials,
which in turn arises from the fact that polynomiais not well

Proof. We may directly prove the assertion in Example 6 aunderstood.

follows. Since

Our objective is to present the concept that tHgnmonial
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ring may be thought of as the Cartesian produdnfafitely Theorem 3.1. (Polynomial function)IfR is an integral
many copies of the ring of scalars with only fihjtenany = domain with infinitely many elements, then we mdgritify
non-zero components, whose elements may therefere the polynomial and the polynomial function.
written in the form of polynomials. Cf. Example 7.

The following lemma is the fundamental theoreminmité
field theory.

Let R be a commutative ring with unity. In Example 2,  -eémma3.1. (i) For any prime poweq = p®, there exists a

we choose the index set to eu {0} (or any countable set, L_mique finite field[F, wi_th q ele_ments, which is a splitting
say N ). Then the Cartesian producf[Z,R = {c = field of X7 — X andFy is a cyclic group of ordeg — 1.

3.1. Formal Power Series Rings

(co» €1, )|ci € R} Of infinitely many copies oR forms a (if) For any e € N, there exists a unique extensiige of
ring under componentwise addition and multiplicatisith  F, of degreee. The extensiorfF,/F, is a cyclic extension
unity. and the Galois group is generated dysuch thata? =
Let X denote an indeterminate and we view the elemeat? (va € Fge).
¢ = (co,¢1,°+) as aformal power series Example 7. Let p be a prime. Then by Theorem 3.1, (i), the
= c(X) =+ X + (3.1) Fermat little theorem holds true:

. ) =1 =1,0 # a € GF(p) = Z/pZ, 3.7
The set of all the formal power series owelis denoted by * * ® /p 3.7)

whence ¢? = a and so the polynomial functiofi(a) =
aP — a is a zero map although the polynomfglx) = X? —

on which there are defined componentwise additioth the X 1S @ non-zero polynomial of degrge

R[[X]] = {co + ;X + ¢, X% + -+ |cy, € R} (3.2

new Cauchy product as multiplication: For two fotpawer Example 8. Let p be a prime. We take up Example 7. By
seriesa(X) = ag + a, X + a,X? + -, we define the Fermat little theorem (Theorem 3.1, (i)) we édahe
decomposition

a(X)‘l‘ﬁ(X)=a0+b0+(a1+b1)X+"', (3 3) .

- Pl-1= —a)=Tho(X—k). (38
a(X)BX) = apby + (aghy + azbo)X + -+ cp X* + -+, X 1= Nosaez/pn(X = @) = [limg(X = 1). (3:8)
The scalar product by elements®fmay be defined as Hence comparing the constant term, we obtain

ca(X) =cag+ ca; X + . (3.4) (@ —1!=-1 mod p, (3.9)

With these operationg[[X]] forms anR-module as well which is called Wilson's theorem.

as aring (i.e. an algebra), called the formal posegies ring.

- 4. Polynomials and Code Words
3.2. Polynomial Rings

) ) o o Our objective in this section is to elucidate soratwague
Apolynomial y is a terminating formal power series, i.€. &jtation surrounding the (cyclic) code and theesponding
sequence with all but finite number_of coordinatesg 0. polynomial. As is shown in §3.2, polynomials areniéing of
Therefore there exits the maximal inde N U {0} such e coordinates. But this interpretation does remtns well
thatc, # 0, ¢, =0, k>n+1: perceived in engineering disciplines and it happémet
(3.5) beginners find difficulties in following the argumtethat in

Y = (€, €17+, €, 0,0, ), ) .
place of code words one considers the corresponding

which, correspondingly to (3.1), may be expressed a polynomials. We elucidate this situation by thddaling
5 . Definition 2. To each codewotd= (¢, ¢y, -+, cq_1) € FY,
Yy =cot X+ X+t X (3:6) by the very definition, there corresponds the poiyial

cX)=cyt+c X+ +c,_, X1 caled the code
polynomial and we identify them. We also wripe(X) =
(Cne1, €1y, €0) = Cpeq + CoX + -+ + i, X™ 1, which is
3.3. Polynomial Functions the representop, (X).

. _ This clarifies the setting in many papers includié [11],
Let S/R be a ring extension and I¢(X) = ¢y + ¢, X + [12], etc.

-+ ¢, X™ € R[X]with ¢, # 0. Then for an element € S,
the expressiorcy + cya + - + c,a™ is an element of5, .
which we may writef («) and we call the process of forming S. CyCI ic Codes

f(a) from f(X)substitution ofa in the variableX with In this section we present the theory of cycliceih the

f(a) being called_ the value of(X) ata. In particular, if language of polynomialsG€(q)[X]/(X" — 1)). In the first
f(a) =0, thena is called a root of. If we fix f € R[X]  gypsection we appeal to the structure theorem effahtor
and leta € S vary, then we obtain a functiofi € (S),  ring of the polynomial ring over a field modulo algnomial
which is called a polynomial function. to the effect that it is a PID and such is thedadng. Here we

called a polynomial of degrae(denoted:degy = n). c,is
called the leading coefficient.
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need the notion of equivalence classes in addttothat of
polynomials or Cartesian products.

5.1. Argument Depending on the PID Structure

In this subsection we need the following facts.

Theorem5.1. (Euclidean division)The polynomial ring over
an integral domain is a Euclidean ring. More cotadye let
f,g € R[X] and let the leading coefficient gf lies in R*.
Then there exist polynomials g € R[X] such that

fX) = gX)qX) +rX)

with degr < deg g. If R is an integral domain, thegq,r
are uniquely determined.

Theorem 5.2. (Euclidean— PID —» UFD)A Euclidean
domain is a principal ideal domain (PID). A PIDasunique
factorization domain (UFD). Hence a Euclidean damisi
UFD, and a fortiori, the polynomial ring is a UFD.

Definition 3. Let € be a linear codec GF (q)". If for any
of its elementc,

(5.1)

Cc = (Co, Cl,"',Cn_l) € C
(5.2)
= p(C):= (Cn—erO""'Cn—l) ecC

holds (hence all shifts belong t by induction), therC is
called acyclic code.

Example 9. (i)
¢, = {(0,0,0),(1,1,0),(1,0,1),(0,1,1)}  (5.3)

is a cyclic code.

(i) Let C, be a binary linear code given by its parity check Theorem 5.3.

matrix

1011100(19)
1110010(20)
0111001(21)

H, =(=tAD. (5.4)

The generating matri%, for C, is seen to be

1000110(23)
0100011(24)
0010111(25) |’
0001101(26)

2 =

(5.5)

It is well-known that the theory of cyclic codesnche
described most clearly in terms of the polynom{alsmore
naturally, we identify a codeword with its codeyr@mial; cf.
Theorem 5.3). Hereafter we &t be a field (finite or not) and
let F[X] denote the ring of all the polynomials with
coefficients in F, with X an indeterminate. However,
whenever we speak of codes, the field is to beghbas finite:

Keiichi Takahashi and Takayasu Kaida:
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is generated by a divisoh = h(X) of m(X) : F[X]/
(m(X)) = (h(X)), whereh(X) may be chosen to be monic.
Proof. Leti be an ideal o [X]/(m(X)). Letj = {f(X) €
fIX1|f € i}. Then we may show thatis an ideal ofF[X].
Hence it must be a principal ideal, spy (h(X)) with a

polynomial h(X) € F[X]. Then clearlyi = (h).

Note that sincem(x) = 0 € i, it follows thatm(X) is
divisible by h(X), i.e. h is a divisor ofm. If the leading
coefficient of h(X)is ¢,, # 0, then we may use;;*h(X) as a
generator ofF [X]/(m(X)).

Proposition 5.2. In the factor ringfF[X]/(m(X)), where
degm =n > 1, a complete set of residues is given by the
residues modulan(X):

F[X]/(m(X)) = {r(X)|r(X) € F[X], degr < n}
(5.6)

={c.+ X+ -+ XV €F}

Proof. For any polynomialf = f(X), we have by the
Euclidean algorithm,

f=mq+r, q,reF[X], degr<n, (5.7)

whence f =+ . Further, if degr <n,degs <n, then

deg(r —s) <n, and sor — s ¢ (m). Hencer # 5. Hence

the given set is a complete set of residues mogi().
Definition 4. For each codewotd= (cy, ¢y, **,Cpn-1) € F4,

we correspond the polynomiat(X) =cy + ¢ X + -+

c,-1X™ ! called thecode polynomialand we identify them.

We also write p.(X) = (cp-1,€1,"**,€Co) = Cpoq + X +

-+ + ¢,_,X™" 1, which is the representor.

In Definition 2, we may identify the

codeword and the code polynomial by the embedding

f:C > F[X]; f((corcrrcn1)) =co+ e X + -+ X1 (5.8)

Proof. With the Cauchy product (3.3), the polynomialsior
a ring. The mapping in (5.8) is a linear monomasphand so
C may be identified with its imagg(C) = {cy + c; X + -+
Cp1 X" Yc; € F}.

Lemma 1. We have

pe(X) = Xc(X) — cpo1(X® — 1) = Xc(X) mod (X" —1). (5.9)

This Lemma motivates one to consider the factog rin
F[X]/(X™" - 1) whose elements are

c(X)=cy+c X+ +cp_ X1 L Lemma 1 means

Xeg+ X+ -+ X1 =cpog +coX + 4 e X1,

where the right-hand side corresponds to the shift
(Cph-1,Co»***» Cn_z)- By induction, we have

F =TF,. Some basic notions needed to follow the subséquen ECO F X+t X1

argument may be found in [10, 8§1.5], which also/sgras a
source for preceding sections. The main ingredsshheorem
5.2 to the effect that a polynomial ring over ddies a PID,
which entails the following

Proposition 5.1Let m = m(X) be a non-zero polynomial
in F[X] with coefficients in a fieldF. Then the factor ring

F[X]/(m(X)) = {f|If = f(X) € F[X]} isaPID. Moreover, it

=Cp-j+ Cn_j+1X + e+ cn_j_lX"‘l,

which corresponds to thgh shift. Hence if all these residue
classes belong ta, thenC is a cyclic code.

The following two theorems are fundamental in theory
of cyclic codes.
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Theorem 5.4. SupposeC is a linear code= F™ and let 6. PSO

i ={c(X)|ceC} PSO, Particle =~ Swarm  Optimization, is a
_ . . . _ biologically-inspired  stochastic optimization teddune
Then C is a cyclic code if and only if is an ideal of arising from the family of evolutionary computatiand gives

F[X]/(X™ - 1). better solutions than GA (Genetic Algorithm). Ire thriginal
Proof. Suppose ¢ is a cyclic code and let version of PSO due to Kennedy and Eberhart [15varm
¢ =1(co,C1,"**» Cpe1) consists of N particles moving around a prescribed

" =(c',c1',,cnq') be arbitrary codewords. Then D-dimensional search space. Thth particle is denoted by
c(X) + c’(X) corresponds ta + ¢’, so that the sum and X; = (xi1,,x;p), 1<i<N whose best previous
difference belong ta. For anya € F, the polynomialge(x)  Solution pbes)) is denoted by, = (py, -, pip), while the
corresponds tac. By Lemma 5.1, for any power of, we best solutiondbest) achieved by the whole swarm is denoted
have X7 ¢(X) € . Hence for any element(X) € F[X], we by Fy = (pgl_' . Pgn)- The current ve!omty (rate of change
havemTX) € i. Hencei is an ideal ofF [X]/(X" — 1). of its position) of thei-th particle is denoted by, =

Conversely, ifi is an ideal ofF[X]/(X™ — 1), then for any (vi&:[;éziﬁ)étep each particle moves toward phest and
‘s:ﬁf‘t) ((ECC’ vze ha\éex C)()é )CE gr,]dwrr]\::c;nz"illnfh;hasthitfrt]?t atlr;?) gbest locations. In the improved PSO, particles are

n-1,%0, """ tn-2 manipulated by the following equations
belong toC, which means thaf is a cyclic code. P y ged

Theorem 5.5. If a linear codeC c F™ is a cyclic code, then v;;(k + 1) = wvz(k) + ;R (Pig — x4 (k)
there exists a unique monic divisgr= g(X) of X™ —1 + ;R (Pga — Xia),
such that

6.1)
C = {c € F*|c(X) is a multiple of g(X)}. (5.10) Xxia(k+ 1) = (1 —mc)xiq(k) + mcvya(k + 1),

Conversely, if there is such g then( is a cyclic code. 1<i<N 1=<d<D,

Moreover, we have . "
where ¢; resp.c, are positive constants called cognitive

dim ;C +degg =n. (5.11) learning rate resp. social learning rafe,is a time decreasing
. _ _inertia factor (weight),rand is a random function with

Proof. If C is a cyclic code, then the setn Theorem 5.4is  yalyes in[0,1], andmc is a momentum factor. The velocity
an ideal, which in view of Proposition 5.1, mustdigncipal,  of the particles is limited t0[Vinins Vinax] @and Vipin =
say i = (g(X)) with a monic g(X) € F[X] which is a
divisor of X™ — 1. Hencec( is given as (5.10).

We turn to the proof of (5.11). Ladlegg = s. Recall
Proposition 5.2 giving a complete set of residuesduio
X™ — 1. Then we see that far belongs toc, it is necessary
and sufficient that

Xmin' Vmax = Xmax‘

In [4], fractional calculus which can provide tréolinal
PIDs with a novel and higher performance at theifsee of
increased complexities arising from specificatiaristhe 5
parameters including integral and derivative ordeis
intelligent optimization method can be used forigigisg it

which make use of PSO.

c(X) = 9X)q(), (5.12) A swarm is the battery stack consistinghdf= 180 ~ 216
where degg <n—m . le. that ¢(X) = g(X)r(X) with  particles and a particle searches in Rf¢ with D = 36 for
T(X) =co+ X+ + o XV ™1 . Since there are its best positior3.6V. A typical block of cells is a series
g™ choices for the coefficients/, we have#C = q™~5. l.e.  (cascade) connection df2 cells combined as & parallel

(5.11) holds true. array: 3P12S.

Conversely, if there is g for which (5.10) holds true, then  The i -th particle is denoted by
the seti in Theorem 5.4 ifg(X)), a principal ideal. Hence x,(t) = (xkl(t),---,xk[,(t)),l <k<N , and x,(t)
by Theorem 5.4( is a cyclic code. indicates the amount of charge at timeThe velocity of each

Definition 5. The unique polynomialg(X)|(X™ —1) particle is the charging time to its full load. &s[23], at the
given in (5.10) is called agenerating polynomiatué cyclic battery screening test, the minimum charging tim# w
code C. Cis then called a cyclic code with the generatindhecome known and it is the value of thg,, = T, in [23].

polynomialy. N N We consider the stochastic process
Hence, by examining the divisors &f* — 1, we may study
the cyclic codes. xi(k+1) =1 —mo)x;(k) + mevy(k+1), (6.2)

Note that the argument given above is an structural
counterpart of the argument of [7]. In the lattar,more
constructive and elementary way is adopted relyingthe
existence of the minimal polynomial.

xi(k+1) =1 —mc— AR, — AR,x;(k) + (mec +w)vi(k+ 1) +C;, (6.3)
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where

C; = Almlpbest,i = AR, Gpest- [4]
6.1. Nested PSO

(5]

In the problem considered by us, we have a stack-&f
blocks of batteries connected in series. Henceetlxscks
will in turn be the particles in our swarm. The lplem here is
that the position and the velocity of each blockas known.
The block consists of 3-4 parallel arrays of a @mtion of 12
cells connected in series. Now the position valokshese
cells inside a block define the position vectottaf block and
their individual position values are itself govedrigy the PSO
algorithm in the swarm of cells. Thus basically R8O
algorithm has been nested here. First we need ity dpe
algorithm for the cells connected in series ingiddock so as
to be able to define the position vector for theckl When we
have the position vector of the components of tbek) then
we apply the algorithm on the block with these ealof the

(6]

[7]

(8]

9]

10
position of its constituents. [10]
Theorem 6.1. (A speculation) Homeostasis —chemo
-dynamical stability after replication of cells agll as PSO [11]
algorithms may be though of as nested Cartesiadugto
under suitable interpretation of the stochasticity. [12]
6.2. Optimization Criteria and a Fitness Function
Two optimization criteria are often used ITAE argE| [13]
which are short-hands fantegral of time-weighted absolute
error andintegral of squared error: [14]
ho=f Te@®ldt, Jo =[] le®* dt.  (6.4)
The finite part of these mean values is a link tt@tnects [15]
control theory and number theory, in the lattendifich an
essential role is often played by the mean squstmate, i.e.
an asymptotic  behavior of the finite  part[16]

]Z(x)=f0x|e(t)|2 de . Cf. also [22] for finite power
signals/, is feasible to good response but its selectiofil7]
performance is not good, whifg can track errors quickly but
easily lead to oscillation. In [4], [24], the weigd
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combination of ITAE and the (square of) controlitip el
J = J; wile()] +wou (1)) dt, 65
where 0 < w; < 1 (w; = 0.99, w, = 0.001 is used). Then
the fitness function id/J. [20]
[21]
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