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Abstract: The following research plays a central role in deformation theory. If x, is a moduli space over a field �, of 

characteristic zero, then a formal neighborhood of any point �ϵx, is controlled by a differential graded Lie algebra. Then using 

the derived categories language we give an analogous of the before sentence in the setting of non-commutative geometry, 

considering some aspects E∞— rings and derived moduli problems related with these rings. After is obtained a scheme to 

spectrum; by functor Spec and their ∞— category functor inside of the space Fun��	
∞to these E∞— rings and their derived 

moduli in field theory. 

Keywords: Deformed Category, E∞— Rings, Formal Moduli Problem, Koszul Duality, Non-Commutative Geometry 

 

1. Introduction 

The idea begin with the research developed of a 

unpublished work of Deligne, Drinfeld, Feigin, and has 

powerfully influenced subsequence contributions, for 

example, the Kontsevich-Soibelman work, or the Manetti 

work, being others.  

However, we will adopt Grothendieck’s “functor of points” 

philosophy [1], giving to the moduli space ,X as equivalent 

to specifying the functor ), Hom(Spec)( XR  RXR =→ . We 

will consider several variations on this theme: 

a) Allowing R , to range over the categoru ring of 

commutative rings, we obtain the notion of a classical 

moduli problem (Definition 2. 3). We will discuss this 

notion and give several examples in §1. 

b) To understand the deformation theory of a moduli space 

,X it is often useful to extend the definition of the 

functor )(RXR → , to a more general class of rings. 

The algebraic topology provides such a generalizations 

via the theory of -E∞ rings spectra.  

c) Let k , be a field. To study the local structure of a 

moduli space X , near a point )(kXx ∈ , it is useful 

to restrict our attention to the values )(RX , where R , 

is a ring which is, in some sense, very similar to k (for 

example, local Artin algebras having residue field k ). 

In this part will make this precise by introducting the 

notion of a formal moduli problem (Definition 5. 6).  

d) Anoter way of enlarging the category of commutative 

rings is by weakening the requirement of commutativity. 

In the setting of ring spectra there are several flavors of 

commutativity available, giving by the theory of -En

rings for ∞<≤ n0 . We will define the notion of a 

formal -En
moduli problem. 

2. Moduli Problems for Commutative 

Rings 

Let R , denote the category of commutative rings and S , 

the category of sets. Doing extensive the use of 

Grothendieck’s “functor of points” philosophy: that is, we will 

identify a geometric object X (such as a scheme) with the 

functor SR → , represented by X , given by the formula 

), Hom(Spec XR R → . 

We consider the following examples. 

Example 2. 1. Let SR →:X , be the functor which assigns 

to each commutative ring R , the set 
×R . Of invertible 

elements of R . For any commutative ring R , we have a 

canonical bijection ) ],[(Hom)(
1

RtRRX
±× ≅= ZR

. In other 
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words, we can identify X , with the functor represented by 

the commutative ring ][ 1±tZ . 

Example 2. 2. We fix an integer 0≥n . We define a functor 

SR →:X , by letting )(RF , denote the set of all submodules 
1+⊆ nRM , such that the quotient MR n /1+ , is a projective 

−R module of rank n (from which it follows that M , is a 

projective −R module of rank 1). The functor X , is not 

representable by a commutative ring. However, it is 

representable in the large category Sch , of schemes. That is, 

for any commutative ring R , we have a canonical bijection  

)1.2(),, Spec(Hom)( Sch

nRRX P≅  

where [ ],,,Proj 0 n

n
xx …Z≅P denotes projective space of 

dimension n . 

For our proposes, the action of a functor SR →:X , is too 

restrictive. We often want to study moduli problems X , which 

assign to a commutative ring R , some class of geometric 

objects which depend on R . The trouble is that this 

collection of geometrical objects is naturally organized into a 

category, rather than a set. This motivates the following 

definition: 

Definition 2. 1. Let Gpd , denote the collection of grupoids, 

that is to say categories in which every morphism is an 

isomorphism. We regard Gpd , as a −2 category, that is to 

say, morphisms are given by functors between grupoids and 

−2 morphisms are given by natural transformations (which 

are automatically invertible). A classical moduli problem is a 

functor Gpd: →RX . 

Every set S , can be regarded as a grupoid by setting 





≠∅
=

= )2.2(
  if,

 if),id(
),(Hom

yx

yx
yx

x

S  

This construction allows us to identify the category S, with 

a full subcategory of the −2 category Gpd . In particular, 

every functor SR →:X , can be identified with a classical 

moduli problem in the sense of the definition 2. 1. 

Example 2. 3. For every commutative ring R , let )(RX , 

be the category of elliptic curves RE  Spec→ (morphisms in 

the category )(RX , are given by isomorphisms of elliptic 

curves). Then F , determines a functor Gpd→R , and can 

therefore be regarded as a moduli problem in the sense of the 

definition 2. 1. This moduli problem cannot be represented by 

a commutative ring or even by a scheme, that is to say, for any 

scheme Y , the space ),, Spec(HomSch YR is a set. In 

particular if we remember the space ),, Spec(HomSch YR as a 

grupoid, every object has a trivial automorphism group. In 

contrast, every object of ),(RX has a non-trivial 

automorphism group, that is to say, every elliptic curve admits 

a nontrivial automorphism, given by multiplication by 1− . 

Nevertheless, the moduli problem , is representable if we 

work not in the category of schemes but in the larger −2

category 
DMSt , of Deligne-Mumford stacks. More precisely, 

there exists a Deligne-Mumford stack 
EllM (the moduli stack 

of elliptic curves) for which there is a canonical equivalence of 

categories 

3) (2. ),, (SpecHom)( EllStDM
MRRX ≅  

for every commutative ring R . 

Example 2. 4. We fix an integer 0≥n . For every 

commutative ring R , let )(RX , denote the category whose 

objects are projective −R modules of rank n , and whose 

morphisms are given by isomorphisms of −R modules. Then 

X , can be regarded as a moduli problem Gpd→R . This 

moduli problem is not representable in the −2 category 
DMSt , 

of Deligne-Mumford stacks [2], because projective −R

modules admit continuous families of automorphisms. 

However, F , is representable in the larger −2 category 
ArtSt , 

of Artin stacks. Namely, there is an Artin stack  

ArtSt)(BGL ∈n , for which there is a canonical bijection  

4) (2. )),BGL(, (SpecHom)(
ArtSt nRRX ≅  

for every commutative ring R . 

3. Higher Categories Theories 

In the before section 2, we discussed the notion  of a 

moduli problem in classical algebraic geometry. Even very 

simple moduli problem involve the classification of geometric 

objects which admit nontrivial automorphisms, and should 

therefore be treated as categories rather than as sets (Examples 

2. 3, and 2. 4). Consequently, moduli problems themselves 

(and the geometric objects which represent them) are 

organized not into a category, but into a −2 category. Our 

discussion in this paper will take us much further into the 

realm of higher categories. 

Definition 3. 1. Let 0≥n , be a nonnegative integer. The 

notion of an −n category is defined by induction on n . If 

,0=n  an −n category is simply a set. If ,0>n an −n

category ,C consists of the following: 

(1) A collection of objects …,,, ZYX   

(2) For every pair of objects C∈YX , , an −− )1(n

category ). ,(Hom YXC
 

(3) Composition laws given by 

)1.3(

), ,(Hom) ,(Hom) ,(Hom: ZY, X, ZXZYYX CCC →×φ
 

which are require to be unital and associative. 

Ifη , is an object of the −− )1(n category ) ,(Hom YXC
, for 

some pair of objects C∈YX , , then we will say that η , is a 

−1 morphism of C. More generally, a −k morphism in C, is 

a −− )1(k morphism in some −− )1(n category ) ,(Hom YXC
. 

Example 3. 1. Every topological space X , determines an 

−n category Xn≤π , the fundamental grupoid of X . If 

,0=n we let XXn 0ππ =≤ , be the set of path components of 
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X . For ,0>n , we let Xn≤π , be the −n category whose 

objects are points of X , where ) ,(Hom yx
n≤π , is the 

fundamental −− )1(n grupoid )(,1 XP yxn−≤π , where 

)2.3(},)1(,)0(]1,0[:{)(, ypxpXpXP yx ==→=  

is the space of paths from x , to y , in X . Composition in 

Xn≤π , is given by concatenation of paths. If ,1=n  this 

definition recovers the usual fundamental grupoid of X .  

The definition 3. 1, is informal because we did not specify 

precisely what sort of associative law the composition in C, 

is required to satisfy. If ,1=n , there is no real ambiguity and 

the definition 3. 1, recovers the usual definition of a category. 

When ,2=n , the situation is more subtly, that is to say, the 

associative law should posit the commutativity of a diagram 

having the form: 

 (3.3) 

Since this is a diagram of categories and functors, rather 

than sets and functions, we are faced with a question, do we 

require this diagram to commute “on the nose” or only up to 

isomorphism? In the former case, we obtain the definition of a 

strict −2 category. This generalizes in a straightforward way, 

that is to say, we can require strict associativity in the 

definition 3. 1, to obtain a notion of strict −n category for 

every n . However, this notion turns out to be of limited use. 

For example, the fundamental −n groupoid of a topological 

space ,Xn≤π usually cannot be realized as a strict −n category 

when 2>n . In the example 3. 1, it is necessary to interpret 

Definition 3. 1., differently. In place of equality, we require the 

existence of isomorphisms 

)4.3(),id(

)id(:

) (Y,Hom,,,,

 ZY, X,) ,(Hom,,,,,

ZYXWZYW

XWZXWZYXW

C

C

×≅

≅×

φφ
φφγ

�

�

 

These isomorphisms are themselves part of the structure C, 

and are required to satisfy certain coherence conditions. When 

2>n , these coherence conditions are themselves only 

required to hold up to isomorphism, being these isomorphism 

specified and required to satisfy further coherences, and so 

forth. As n , grows, it becomes prohibitively difficult so 

specify these coherences explicitly. 

One thesis to respect was enounced establishing that: 

“The construction ,XX n≤→ π establishes a bijective 

correspondence between −n types (up to weak homotopy 

equivalence) and −n grupoids (up to equivalence)” 

We enounce the following definition. 

Definition 3. 2. A topological category is a category C, for 

which each of the sets ), ,(Hom YXC
is equipped with a 

topology, and each of the composites maps (3. 1) is continuous. 

If C, and D , are topological categories, we will say that a 

functor ,: DC→F is continuous if, for every pair of objects 

,, C∈YX the map 

)5.3(), ,(Hom) ,(Hom FYFXYX CC →  

is continuous. The collection of “small” topological categories 

and continuous functors forms a category, which we will 

denote by .attC
1
 

Example 3. 2. Let C, and D , be −∞ categories. Then there 

exists another −∞ categories ),,Fun( DC  with the following 

universal property of that for every −∞ category there is a 

canonical bijection given as 

(3.6))),,'(Hom  )),Fun(,'(Hom atath DCCDCC CC ×≅
∞∞  

We will refer to objects of ),,Fun( DC simply as functors 

from C, to D . 

4. Rings and their Spectrums 

Let C, be the category of all topological spaces and let , be 

the collection of weak homotopy equivalences. We will refer 

to ],[ -1WC as the −∞ category of spaces and denote it by S. 

We describe the object of S, as the CW complexes [3], and 

whose property between CW complexes is:  

(a) The objects of S, are CW complexes. 

(b) For every pair of CW complexes X , and Y , we let

 ), ,(Hom YXS
denote the space of continuous maps from 

X , to Y , (endowed with the compact-open topology). 

The role of S , in the theory of  −∞ categories is 

analogous to that of the ordinary category of sets in classical 

category theory. For example, for any −∞ category C, one 

can define a Yoneda embedding [4] 

1) (4. ), ,Fun(: top SCC→j  

given explicitly by 

)2.4(,),()( SC ∈= CDHomDCj  

                                                             
1
 The construction of this category ,attC can be established as: let C, be a 

topological category. We can associate to C, an ordinary category Ch , as 

follows:  • The objects of C, are the objects of Ch  . 

• For every pair of objects ,, C∈YX we let  

 ), ,(Hom ) ,(Hom 0h YXYX CC π=  

that is, maps from ,X to ,Y are Ch , homotopy classes of maps from ,X to 

,Y are C 

We say that a morphism f , in C , is an equivalence if the image of f , in Ch  , 

is an isomorphism.   

Definition. Let ,: DC→F , be a continuous functor between topological 

categories. We will say that F , is a weak equivalence if the following 

conditions are satisfied:  

a) The functor F , induces an equivalence of ordinary categories 

DC hh → . b) For every pair of objects ,, C∈YX the induced map 

), ,(Hom) ,(Hom FYFXYX DC →  

is a weak homotopy equivalence. 

Let ,ath ∞C be the category obtained from ,attC by formally inverting the 

collection of weak equivalences. A −∞ )1,( category is an object of .ath ∞C  We 

will refer to ,ath ∞C as the homotopy category of −∞ )1,( categories. 
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In this research we are interested in the −∞ category 

analogous more algebraic structures like commutative rings 

(see the Table 1). 

Table 1. Analogies 

Classical Structure −∞ categorical Analogue 

Set Topological Space 

Category −∞ category 

Abelian Group Spectrum 

Commutative Ring −∞E Ring 

Ring of Integers Z   Sphere spectrum S   

Then a functor (4. 1) to these structures is given by the 

functor Spec . 

To establish their application in the homotopy frame we 

need define before the notion of stable homotopy theory. 

Def. 4. 1. A spectrum is a sequence of pointed spaces

,,, 21 ∗∈ S…XX equipped with weak homotopy equivalences 

;1+Ω≅ nn XX here ,: ∗∗∗ →Ω SS denotes the based loop space 

functor  

)3.4(},)1()0(]1,0[:{ ∗==→ ppXpX ֏  

To any spectrum X , we can associate Abelian groups 

,Xkπ for every integer k , defined by ,Xkπ for 0>>n . 

We say that X , is connective if ,0≅Xkπ for 0<n .  

The collection of spectra is itself organized into an −∞
category which we will denote by Sp . If  

)4.4(,},{ 01 ≥+Ω≅= nnnnn XXXX α  

Is a spectrum, then we will refer ,0X as the −th0 space of 

X . The construction determines a forgetful functor ,Sp ∗→ S

which we will denote by ∞Ω . 

We will say a spectrum X , is discrete if the homotopy 

groups ,Xiπ vanish for 0≠i . The construction ,0 XX π→
determines an equivalence from the −∞ category of discrete 

spectra to the ordinary category of Abelian groups. In other 

words, we can regard the −∞ category Sp , as an 

enlargement of the ordinary category of Abelian groups, just 

as the −∞ category S, is an enlargement of the ordinary 

category of sets. 

The category  Ab, of Abelian groups is an example of a 

symmetric monoidal category, that is to say, there is a tensor 

product operation: 

5) (4. Ab,AbAb: →×⊗  

which is commutative and associative up to isomorphism. 

This operation has a counterpart in the setting of spectra, that 

is to say, the −∞ category Sp , admits a symmetric monoidal 

structure: 

6) (4. Sp,SpSp: →×∧  

This operation is called the smash product, and is 

compatible with the usual tensor product of Abelian groups in 

the following sense: if X , and Y , are connective spectra, 

then there is a canonical isomorphism of Abelian groups 

)7.4(,)( 000 YXYX πππ ⊗≅∧  

The unit object for the smash product ∧ , is called the 

sphere spectrum and denoted for S .  

The symmetric monoidal structure on the −∞ category 

Sp , allows us to define an −∞ category  CAlg(Sp), of 

commutative algebra objects of Sp . An object of  CAlg(Sp),

is a spectrum R , equipped with the multiplication 

,RRR →∧ which is unital, associative and commutative up to 

coherent homotopy. We will refer to the objects of  CAlg(Sp),

as −∞E rings and to  CAlg(Sp), as the −∞ category of 

−∞E rings. The sphere spectrum S , can be regarded as an 

−∞E ring in an essentially unique way, and is an initial object 

of the −∞ category  CAlg(Sp).    

For any −∞E ring R , the product on R , determines a 

multiplication on the direct sum .RR nnππ ⊕=∗ This 

multiplication is unital, associative, and commutative in the 

graded sense (that is to say, for ,Rx iπ∈ and ,Ry jπ∈ we have 

))()1( Ryxxy ji

ij

+∈−= π . In particular ,0Rπ is a commutative 

ring and each ,Riπ , has the structure of a module over R0π . 

The construction ,0 RR π→ determines an equivalence 

between the −∞ category of discrete −∞E rings and the 

ordinary category of commutative rings. Consequently, we 

can view  CAlg(Sp), as an enlargement of the ordinary 

category of commutative rings.  

To every −∞E ring R , we can associate an −∞ category 

),Sp(ModR
of −R module spectra, that is to say, modules over 

R , in the −∞ category of spectra. If , and N, are −R
module spectra, we will denote the space  ). ,(Hom )Sp(Mod NM

R

 

Motivated for the analogies given in the table 1, we can give 

the following definition: 

Def. 4. 2. A derived moduli problem is a functor ,X from 

the −∞ category  CAlg(Sp), of −∞E rings to the −∞
category S, of spaces. 

5. Three Examples to Field Theory 

We can consider the following two useful examples in field 

theory, and that can be used in the field description of the 

algebraic behavior of the elements of the moduli space of the 

Higgs fields. 

Example 5. 1. Let ,0X , be scheme (or, more generally, an 

algebraic stack), and let 
0X , be the classical moduli problem 

given by the formula )., Spec(Hom)( 00 XRRF = Let ,Y be a 

smooth algebraic variety over the complex numbers, and let 

),(YgM denote the Kontsevich moduli stack of curves of 

genus ,g  equipped with a stable map to Y (see, for example  
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[2]). Then ),(YgM represents a functor  Gpd, Ring:0 →X

which admits a natural enhancement  .CAlg(Sp): S→X This 

enhancement contains a great deal of useful information about 

the original moduli stack ),(YgM since for example, it 

determines the virtual fundamental class of ),(YgM which 

play an important role in the Gromov-Witten theory.  

Example 5. 2. Let  Gpd,Ring:0 →X be the classical moduli 

problem of example 2. 3, which assigns to each commutative 

ring R , the grupoid ),, Spec(Hom 1 1,MR  of elliptic curves 

over R . It is possible to make sense of the notion of an 

elliptic curve over R , when R , is an arbitrary −∞E ring, 

and thereby obtain an enhancement  ,CAlg(Sp):  S→X of 

.EllM One can use the enhancement to give a moduli-theoretic 

reformulation of the Goerss-Hopkins-Miller theory of 

topological modular forms [5].  

Example 5. 3. The framework of derived moduli problems 

(or more precisely, their formal analogues), see the following 

definition: 

Def. 5. 1. Let ,k be a field. A formal moduli problem over 

,k is a functor  ,CAlg: sm S→X
2

with the following 

properties: 

a) The space ),(kX is contractible. 

b) Suppose that ,: BA →φ and ,':' BA →φ are maps 

between small −∞ algebras over ,k which induce 

surjections .', 0000 BABA ππππ →→ Then the canonical 

map  

)1.5(),'()()'( )( AXAXAAX BXB ×→×  

is a homotopy equivalence. 

This provides a good setting for the study of deformation 

theory.  

6. Schemes to Derived Moduli Problems 

We begin with some elements of the non-commutative 

geometry.  

Def, 6. 1. Let ,k be a field and let ,0≥n be an integer. A 

formal −nE  moduli problem over ,k  is a functor 

)1.6(,Alg: )(

sm S→nX  

                                                             
2
 We let ,CAlgk

denote the −∞ category whose objects are −∞E rings A , 

equipped with a map ,Ak → where morphisms are given by commutative 

triangles: 

'AA

k

→
µλ

 

We will refer to the objects of ,CAlgk
as −∞E algebras over .k  

We let ,Modsm
denote the full subcategory of ,Mod k

spanned by the small −k

module spectra, and ,CAlgsm
denote the full subcategory of ,CAlgk

spanned by 

the small −∞E algebras over .k  

with the following properties: 

i) The space ),(kX is contractible. 

ii) Suppose we are given a pullback diagram of small −nE  

algebras 

BB

AA

→
↓↓

→

'

)2.6(,

'

 

such that the maps ,00 BA ππ → and ,' 00 BB ππ → are 

surjective. Then the diagram  

)()'(

)3.6(,

)()'(

BXBX

AXAX

→
↓↓

→

 

is a pullback diagram in S. 

Let 
0V , be a finite dimensional vector space over ,k and let  

4) (6.,CAlg: sm S→xX  

be the formal moduli problem 
3
, so that ,xX assigns to every 

small −∞E algebra ,A ring over k  , the −∞ grupoid of pairs 

),,( αV where ,V is an −A module and ,: 0VVk A ≅∧α is an 

equivalence. The definition of ,xX does not make any use of 

the commutativity of A . Consequently,  ,xX extends 

naturally to a functor .Alg:
~ (1)

sm
S→xX  By definition, shifted 

tangent complex of  ],1[
~ −xX is given by the Lie algebra 

                                                             
3
 Let ,CAlg(Sp) S→ be the formal moduli problem of Artin stack ),(nBGL

example 2. 3, which assigns to every −∞E ring ,A the −∞ grupoid ),(AF of 

prospective −A modules of rank n . Giving a point ),,( ηkx = of ,X is 

equivalent to giving a field k together with a vector space ,0V  of dimension ,n

over k . In this case the functor ,CAlg: sm S→xX can be described as follows: 

to every small −k algebra ,A the functor ,xX assigns the −∞ category of 

pairs ),( αV , where ,V is a projective −A module of rank ,n and 

,: 0VVk A →∧α is an isomorphism of −k vector spaces. We can denote their 

tangent complex as 
xXT ,

. 

We see that )),/(][()0( 2

, ∈∈= kXT xxX
can be identified with a classifying 

space for the grupoid of projective −∈∈ )/(][ 2k  modules ,V which deform 
0V . 

This grupoid has only one object up to isomorphism given by the tensor product 

.)/(][ 0

2 Vk k⊗∈∈ It follows that ),0(,xXT can be identified with the classifying 

space ,BG for the group ,G of automorphisms of ,)/(][ 0

2 Vk k⊗∈∈ which 

reduce to the identity moduli ∈ . Such an automorphism can be written as 

,1 M∈+ where )(End 0VM ∈ . Consequently ),0(,xXT is a homotopy equivalent 

to the classifying space for the −k vector space )(End 0V , regarded as a group 

under addition. 

Then we obtain an equivalence of −k module spectra ].1)[(End 0, VT kxX ≅  

The shifted tangent complex  

),(End]1[ 0, VT kxX ≅−  

Has the structure of a Lie algebra over k (and therefore of a differential graded 

Lie algebra over k , with trivial grading and differential), given by the usual 

commutator bracket of endomorphisms.  
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).(End]1[ 0VT
xX ≅−  If k , is of characteristic zero, then the 

formal moduli problem ,xX can be canonically reconstructed 

from the vector space )(End 0V , together with their Lie algebra 

structure. For example, being k , a field of the characteristic 

zero, and Moduli, given through the full sub-category of  

), ,Fun(CAlgsm S generated by the formal moduli problems over 

k , we can establish that there is an equivalence of −∞
categories given by  

)5.6(,LieModuli:
dg

k→Φ  

where dg
Liek

, denotes the −∞ category of differential graded 

Lie algebras over k .  

However, the formal ,1E moduli problem ,xX is 

additional data, since we can evaluate ,xX on algebras which 

are not necessarily commutative. Then, it is natural to expect 

the existence of ,xX to be reflected in some additional 

structure on the Lie algebra )(End 0V . But with a major 

careful we can to see that )(End 0V , is not merely a Lie 

algebra, since, there is an associative product (given by 

composition) whose commutator gives the Lie bracket on  

)(End 0V . Then is had the result: 

Theorem 6.1. Let k , be a field, let ,0≥n and let ,Modulin
 

be the full sub-category of ), ,Fun(Alg )(

sm
Sn spanned by the 

formal ,nE moduli problem. Then there exists an equivalence 

of −∞ categories  

)6.6(,AlgModuli: )(

aug

n

n →Φ  

Moreover, if ,ModlgA: )(

aug k

nU → denotes the forgetful 

functor ,AA m֏ which assigns to each augmented −nE

algebra their augmentation ideal, then the composition ,Φ�U

can be identified with the functor ].[ nTX X −֏  

Proof. [6-8, 9-13]. 

7. Results 

Let .Alg, )(

aug

nBA ∈ Let ,ModulinX ∈ the formal −nE

moduli problems on k . Let ,G F, RR ΨΦ  ∀ R the functors 

defined and determined by the theorem 6. 1, ∀ R , a −k

module that is an −A module. Then the isomorphism that 

represent these functors, are translated in the equivalences of 

−∞ categories: 

)1.7(,AlgModuli )(

aug

F

G

n

n

R

R

Φ

Ψ
∆  

which is true by the theorem 6. 1. 

We consider the following definition to establish the 

existence of the adjunct left and right functors  G, F, that 

appear by integral transforms that are involved in the −k

modules level [14].  

Def. 7. 1. Let ,Moduli nX ∈ be a formal −nE moduli 

problems over ,k and let ,A be an augmented −nE algebra 

over .A  We will say that a natural transformation  

)2.7(),(: AX Ψ→α  

reflects ,X if, for every augmented −nE algebra ,B over ,k

composition with α , induces a homotopy equivalence: 

)3.7()),(,(Hom),(Hom ModuliAlg )(
aug

BXBA
nn Ψ→  

We let ,Modulio
n

denote the full sub-category of ,Modulin
 

spanned by these formal −nE moduli problems ,X  for 

which there exists a map (7. 2) which reflects F . In this case, 

the map (7. 2) is well-defined up to canonical equivalence, 

considering in particular that we can regard the construction 

AX ֏ , as defining a functor 

)4.7(,lgAModuli: )(

aug

o n

n →Φ  

The functor Φ , is left adjunt to Ψ , in the sense that for 

every ,Modulio

nX ∈ and every ,lgA )(

aug

nB∈ we have a 

canonical homotopy equivalence 

)5.7(),),((Hom))(,(Hom )(
augAlgModuli BXBX nn

Φ→Ψ  

Indeed, since the functor ,ModuliAlg: )(

aug n

n →Ψ preserves 

small limits, one can deduce the existence of a left adjoint to Ψ , 

using the adjoint functor theorem. In other words, it follows 

formally that .ModuliModulio

nn =  However, we will 

establish this equality by a more direct argument, which will 

help us to compute with the functor Φ .  

Also we consider the following property due to Koszul 

self-duality of the little −n cubes operad [11, 15]: 

)6.7(),Fun(AlgModulilgA
)(

sm

)(

aug

-1

Sn

n

n ⊆≅
Φ

 

Theorem (I. Verkelov, F. Bulnes) 7. 1. Considering the 

functors Φ , Ψ , with the before properties (7. 1), (7. 3), (7. 5) 

and (7. 6), we have the following scheme  

)7.7(),,(Hom))(Spec,(Hom CAlg(Sp)Moduli SBBX
n

≅  

Proof. The demonstration is very immediate using the 

mentioned properties inside the hypothesis of the Theorem. 

However is necessary establish some fine details on the acting 

of the functors F , G , that appear in the Koszul duality 

application and the relative details on the inverse limits to 

obtain Spf,
4
in the context of “CRings”, CAlg(Sp) . 

                                                             
4
 If ,lim α

α

AA
←

≅ is a pro-object of )(

smAlg n , we let the functor 

 ,Alg: )Spf(
)(

sm S→n
A  

as the functor given by the formula 
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Indeed, if ,lim α
α

AA
←

≅ is a pro-object of )(

smAlg n , then 

8) (7.,SpeclimSpf A  A
→

≅
α

 

then .ModuliSpfA n∈   

For other side, considering A , a −nE small algebra over k , 

and 
nA ModuliSpec ∈ , denoting the representation functor 

,Alg: )(1

sm
S→Φ− n given by the formula  

,) ,Fun(AlgSpecG )(G

))((),(Hom))((Spec

)(

Alg

sm

)(
sm

SnBB

BABABA n

∈∈Ψ=Ψ=

Ψ==

R

D
 

To the functor F , the existence of an arbitrary element 

,Spec  B that fall inside of )(

auglgA n  needs the additional 

arguments as ,ModuliModuli
o

nn = which was mentioned 

before. Then the compute of the functor Ψ , can be realized 

easily . 

Then by (7. 1) all equivalences are satisfied in the context of 

the moduli schemes and “CRings”. Due to that the functor 

,lgAModuli: )(

aug

n

n →Φ is faithful then is followed the all 

scheme (7. 7).   

8. Integral Transforms Applications 

As mentioned in the before section 7, the left and right 

functors  G, F, appear by the integral transforms that are 

involved in the −k modules level. If we consider that these 

−k modules are −HGD /
modules then the equivalences 

given by the Penrose transform [16] 

)1.8(),,
~

ker(),(0

BRSTQUXH ≅λL  

are translated in the equivalences [16, 17]: 

)2.8(), ,(M  ts)equivarian-  ulesmod(M
F

G
/ HGD GHG g

R

R

Φ

Ψ
− ∆  

which are translated in the isomorphism the Hecke categories 

[16]: 

3) (8. Y),~M(  ,g∆∧G
H  

where The Lie algebra ,g~  is the loop extension of the loop 

algebra ).(tg  

Considering the role of S, in the theory of  −∞ categories 

as the analogous to that of the ordinary category of sets in 

classical category theory, and the Yoneda embedding defined 

by (4. 1) and (4. 2) for any −∞ category C, then in particular 

                                                                                                        

).,(HomLim),(Hom )(
sm

)(
sm Alg)Pro(Alg

BABAB nn α
α→

≅֏  

to a graded algebra ),,(
s

GBunH D• obtained from a Yoneda 

embedding, and generated by one copy of ,H∨ over 

],Op[
0

GLH C≅ is had that on a disk that [18]: 

Theorem (E. Frenkel, C. Teleman) 8. 1. The Yoneda algebra 

),,(Ext
)Bun(

ss

G
s DD

D
is abstractly −∞A isomorphic to (the 

strictly skew-commutative one) ). ,(Ext
OpOpLoc G

L
G

L
G

L OO•  

Considering a full subcategory of sheaves in 

 ),Coh(Loc 
GL=C  then we have: 

)4.8()],(Op[)V ; ]],[[( crit DzH
GL

•• Ω≅gg  

Then considering an −∞A enhancement of (8. 4), that is to 

say, an −∞ algebra in )(

auglgA n , then we can give the 

isomorphism  

)5.8(),,Bunker()V ]];[[(
o

crit

0 ∂≅ GzH g  

which is the Penrose transform to a functor  ). ,Fun( top SD

Here ,XBuno =G where X , is the flag variety as the 

“quantum” version of the construction of an algebra symT. 
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