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Abstract: Heteroscedasticity is a problem that arises in regression analysis for a variety of causes. This problem impacts both 

the estimation and test procedures and it is therefore critical to be able to detect the problem and address it. The presence of 

outliers is a regular occurrence in data analysis and the detection of heteroscedasticity in the presence of outliers poses lots of 

difficulty for most of the existing methods. In this paper, a modified Breusch-Pagan test for heteroscedasticity in the presence of 

outliers was proposed. The modified test is obtained by substituting non-robust components in the Breusch-Pagan test with robust 

procedures which makes the modified Breusch-Pagan test to be unaffected by outliers. Monte Carlo simulations and real data sets 

were used to investigate the performance of the newly proposed test. The probability value (p–value) and power of all methods 

considered in this study were computed and the results indicate that the modified robust version of Breusch-Pagan test 

outperformed the previous tests significantly. The proposed modified Breusch-Pagan test is therefore recommended for testing for 

heteroscedasticity in linear regression diagnosis, especially when the data sets evidently contain outliers. 

Keywords: Heteroscedasticity, Outliers, Cook’s Distance, S-estimation, Modified Breusch-Pagan Test,  

Monte Carlo Simulations 

 

1. Introduction 

For decades, heteroscedasticity (or time-dependent 

volatility) has been recognized in economic and financial 

time series. If researchers ignore this issue 

(heteroscedasticity), they may end up with inefficient 

approaches. Ordinary Least Squares (OLS) has been widely 

used as an inferential tool in regression over the years. The 

OLS has some nice and appealing qualities under the normal 

assumptions. Homogeneity of error variances 

(homoscedasticity) is one of them, and the OLS estimators 

have the minimal variance property for it. That is, ������ = 		�	
 = 1,2,… , � 

However, there are times when the assumption of 

homoscedastic error variance is violated. When looking at a 

cross section of enterprises in a single industry, for example, 

error terms associated with very large firms may have more 

variance than error terms associated with smaller firms. The 

condition is known as heteroscedastic of error terms when 

the error variance changes. When there is a considerable 

disparity in the sizes of the observations, heteroscedasticity is 

common. It is critical to identify and address this issue. 

Otherwise, least squares estimators will still be unbiased, but 

will not have the minimum variance property, and as a result, 

the standard errors of the regression coefficients will be 

greater than necessary. There are various reasons why �� 's 

variances may not be constant, which includes asymmetry in 

the distribution of one or more of the model's regressors, 

presence of outliers, incorrect data transformation, reduction 

in experimenter’s error, among others. 

A vast variety of diagnostic plots for diagnosing 

heteroscedasticity are available in the literature. However, 

because graphical approaches are highly subjective, 

analytical methods are most often preferred in detection 

heteroscedasticity. There are also rigorous processes for 

assessing the homoscedasticity of data in the literatures. 

Kutner et al. [7] and Chatterjee and Hadi [3] provided 

comprehensive reviews of various analytical tests for the 

detection of heteroscedasticity. The majority of these 

methods rely on least squares residuals, but there is evidence 
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that if outliers are present in the data, these residuals may not 

exhibit a heteroscedastic pattern. The presence of 1 to 10% 

outliers in routine data, according to Hampel et al. [6], is 

more of a norm than an exception. As a result, in the presence 

of outliers, many analytical tests may suffer from a lack of 

power. 

The formal methods of detecting heteroscedasticity includes 

the Park test, Spearman’s Rank Correlation test (Spearman, 

[12]), Goldfeld-Quandt test, Breusch–Pagan–Godfrey (BPG) 

test, White’s General Heteroscedasticity test, among others. 

Among these methods, the Goldfeld-Quandt test has been 

modified by two authors to detect heteroscedasticity in the 

presence of outliers. This article proposed and compared the 

Modified Breusch–Pagan (MBP) test with the famous 

Goldfeld-Quandt test, Breusch–Pagan–Godfrey (BPG) test, 

White’s General Heteroscedasticity test, the Modified 

Goldfeld–Quandt (MGQ) test of Rana et al [10] and the 

Robust Goldfeld–Quandt test (MGQ) of Alih and Ong [1]. 

2. Methodology 

2.1. Goldfeld-Quandt Test 

The Goldfeld-Quandt test is applicable if one assumes that 

the heteroscedastic variance, 	��, is positively related to one 

of the explanatory variables in the regression model. For 

simplicity, consider the two-variable model: �� =	�� + ���� +	�� 
Suppose 	�� is positively related to �� as 	�� =		����                                      (1) 

where 	� is a constant. 

Assumption (1) postulates that 	��  is proportional to the 

square of the X variable. 

If (1) is appropriate, it would mean 	�� would be larger, the 

larger the values of �� . If that turns out to be the case, 

heteroscedasticity is most likely to be present in the model. 

To test this explicitly, Goldfeld and Quandt suggest the 

following steps: 

i. Order or rank the observations according to the values 

of ��, beginning with the lowest X value. 

ii. Omit c central observations, where c is specified a 

priori, and divide the remaining (n − c) observations 

into two groups each of �n	 − 	c�/2 observations. 

iii. Fit separate OLS regressions to the first �n	 − 	c�/2 

observations and the last �n	 − 	c�/2 observations, and 

obtain the respective residual sums of squares RSS1 and 

RSS2, RSS1 representing the RSS from the regression 

corresponding to the smaller ��  values (the small 

variance group) and RSS2 that form the larger �� values 

(the large variance group). These RSS each have 

������ − 	�	��	 ��������� 	 !  

where k is the number of parameters to be estimated, 

including the intercept. 

iv. Compute the ratio 

"	 = 	 #$$%/&'#$$(/&'                                (2) 

If ��  are assumed to be normally distributed (which we 

usually do), and if the assumption of homoscedasticity is 

valid, then λ of (2) follows the F distribution with numerator 

and denominator df each of �� − ) − 2��/2. 

If in an application the computed λ (= F) is greater than the 

critical F at the chosen level of significance, the hypothesis 

of homoscedasticity is rejected, that is, heteroscedasticity is 

very likely.(Goldfield and Quandit, [5]) 

2.2. Breusch–Pagan–Godfrey (BPG) Test 

The success of the Goldfeld–Quandt test depends not only 

on the value of c (the number of central observations to be 

omitted) but also on identifying the correct X variable with 

which to order the observations. The limitation of the 

Goldfeld–Quandt test can be avoided if we consider the 

Breusch–Pagan–Godfrey (BPG) test. 

To illustrate this test, consider the k-variable linear 

regression model �� =	�� + ����� +⋯+ ����� +	��                 (3) 

Assume that the error variance 	�� is described as 	�� = !	�+� + +�,�� +⋯+ +-,-��               (4) 

that is, 	�� is a function of the nonstochastic variables Z’s; some 

or all of the X’s can serve as Z’s. Specifically, assume that 	�� = +� + +�,�� +⋯+ +-,-�            (5) 

that is, 	�� is a linear function of the Z’s. If +� =	+. = ⋯ =	+- = 0, 	�� =	+� , which is a constant. Therefore, to test 

whether 	�� is homoscedastic, one can test the hypothesis that +� =	+. = ⋯ =	+- = 0. This is the basic idea behind the 

Breusch–Pagan test. The actual test procedure is as follows. 

i. Estimate �� =	�� + ����� +⋯+ ����� +	��  by OLS 

and obtain the residuals �̂�, �̂�, . . . , �̂�. 

ii. Obtain 	2� =	∑ �̂��/� , the maximum likelihood (ML) 

estimator of 	�. 

iii. Construct variables 4�  defined as 4� =	 �̂��/	2� 

which is simply each residual squared divided by 	2�. 

iv. Regress 4�  constructed on the Z’s as 4� =	+� + +�,�� +⋯+ +-,-� +	5�             (6) 

where 5� is the residual term of this regression. 

v. Obtain the ESS (explained sum of squares) from (6) and 

define 

∅ = �� ��77�                                  (7) 

Assuming ��  are normally distributed, if there is 

homoscedasticity and if the sample size n increases 

indefinitely, then 
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∅	89:; 	<-���  

that is, ∅ follows the chi-square distribution with (m − 1) 

degrees of freedom. 

Therefore, if in an application the computed ∅  (= χ� ) 

exceeds the critical χ� value at the chosen level of significance, 

one can reject the hypothesis of homoscedasticity; otherwise 

one does not reject it. (Breusch and Pagan, [2]) 

2.3. White's General Test of Heteroscedasticity 

Unlike the Goldfeld–Quandt test, which requires 

reordering the observations with respect to the X variable 

that is thought to cause heteroscedasticity, or the BPG test, 

which is sensitive to the normality assumption, White's 

general test of heteroscedasticity does not rely on the 

normality assumption and is simple to use. 

Consider the following three-variable regression model as 

an example of the basic concept: �� =	�� + ����� + �.�.� +	��               (8) 

The White test procedure is as follows: 

i. Given the data, estimate the parameters in (8) and 

obtain the residuals, �̂�. 
ii. Run the following (auxiliary) regression: �̂�� = +� + +���� +	+.�.� + +>���� +	+?�.�� ++@����.� +	5�                              (9) 

That is, the squared residuals from the original regression 

are regressed on the original X variables or regressors, their 

squared values, and the cross product(s) of the regressors. 

Higher powers of regressors can also be introduced. Note that 

there is a constant term in the equation even though the 

original regression may or may not contain it. Obtain the A� 

from the (auxiliary) regression. 

Under the null hypothesis that there is no 

heteroscedasticity, it can be shown that sample size (n) times 

the A� obtained from the auxiliary regression asymptotically 

follows the chi-square distribution with degrees of freedom, 

df equal to the number of regressors (excluding the constant 

term) in the auxiliary regression. That is, �. A�	89:; 	<&'�                                (10) 

where df is as defined previously (i.e., df = m – 1). In this case, 

df = 5, since there are 5 regressors in the auxiliary regression. 

If the chi-square value obtained in (10) exceeds the critical 

chi-square value at the chosen level of significance, the 

conclusion is that there is heteroscedasticity. If it does not 

exceed the critical chi-square value, there is no 

heteroscedasticity, which is to say that in the auxiliary regression 

equation (10), +� =	+. =	+> =	+? =	+@ = 0. (White, [13]) 

2.4. Modified Goldfeld-Quandt Test 

Rana et al. [10] presented a novel test that is based on the 

Goldfeld-Quandt test. The parts of the Goldfeld-Quandt test 

that are influenced by outliers are first identified and then 

replaced by more reliable measurements. This test is known 

as the Modified Goldfeld-Quandt (MGQ) test. The following 

is the procedure of the modified Goldfeld-Quandt test. 

Step 1: Order or rank the observations according to the 

value of X, starting with the lowest X values, as in the 

standard Goldfeld-Quandt test. 

Step 2: Exclude the centre c observations, where c is 

predetermined, and divide the remaining (n-c) observations 

into two groups, each with (n-c)/2 observations. 

Step 3: Fit the regression line using Rousseeuw and Leroy 

[11]'s robust Least Trimmed of Squares (LTS) approach to 

look for outliers. The deletion residuals for the whole data set 

should next be computed using a fit that excludes the points 

indicated as outliers by the LTS fit. 

Step 4: Calculate the MSDR (Median of Squared Deletion 

Residuals) and the ratio for each groups as: 

MGQ = 
BCDE%BCDE(                               (11) 

where, MSDR1 and MSDR1 are the median of the squared 

deletion residuals for the smaller and the larger group 

variances respectively. Under normality, the MGQ statistic 

follows an F distribution with numerator and denominator 

degrees of freedom each of (n-c-2k)/2. 

2.5. Robust Goldfeld-Quandt Test 

Alih and Ong [1] also developed a robust test for 

heteroscedasticity detection that is resistant to outliers and 

inherits the OLS's high efficiency. The proposed test procedure 

which was also a modification of the GQ test was called robust 

GQ test (RGQ test). The method used an outlier search 

algorithm to robustify the non-robust component of the GQ 

test before computing the RGQ score. The RGQ test is a two-

phase technique that starts with an outlier identification 

procedure and then moves on to RGQ-score estimation. 

Algorithm 1 searches the data for outliers and subsequently 

removes the data point from the set of observations while 

algorithm 2 partition the remaining n observations in into two 

groups with each group containing n/2 observations, then fit 

separate OLS to the two groups based on the data set without 

points identified as outliers in algorithm 1 and finally 

calculates the RGQ score which is the ratio of the prediction 

residuals for the two groups based on the OLS fit as 

RGQ = 
FEGCC%FEGCC(                              (12) 

where PRESS1 and PRESS2 are the prediction residuals sum 

of squares for the smaller and the larger group variances, 

respectively. 

The RGQ score follows the F-distribution with numerator 

and denominator degrees of freedom each equals (n − 2k)/2. 

2.6. The Proposed Procedure 

Summarily, the proposed modified Breusch–Pagan (MBP) 

test for detecting heteroscedasticity in the presence of outliers 

is given in the following steps. 

Step 1: Estimate 
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�� =	�� + ����� +⋯+ ����� +	H�            (13) 

by OLS and obtain the regression coefficients ��, ��, …, ��. 

Step 2: Detect the presence of outliers in the data using the 

Cook's distance 

I�	 ≡ KLM�NO��	LMPQRQRKLM�NO��	LMPST%                     (14) 

for each of the response variable. 

Where �U  = (Xl X) – l Xl Y (for the entire data set); �U����  = (Xl X) – l Xl Y (without the data point of the 

outlying response variable); 

s2 = R′R/(n - p); 

R = (Ri) = Y – �W  = Y – X�U  = (I – X (X
l
 X) 

– l 
X

l
)Y [the 

corresponding residual vector]; and 4 is the number of regressors. (Cook, [4]) 

Step 3: Obtain the residual values H� =	:� −	:X�. 
Step 4: Obtain the scaling values 

	X� =	Y-Z&�[�|ZO�	-Z&�[��ZO�|].@^>? , 
_H�8_
�� = 1;
a ��b∑ c�H����d� , 
_H�8_
�� > 1   (15) 

where K = 0.199 and c�	 =	cf�H�� = 	 g�Z�ZO%  

Step 5: Obtain the scaled residuals ��, where �� =	 ZOfhO                                     (16) 

Step 6: Obtain iX� =	∑ �̂��/�                                (17) 

the maximum likelihood (ML) estimator of i�. 

Step 7: Construct variables !� defined as 

!� = jhO%kh% − 	1                                (18) 

Step 8: Regress !� thus constructed on the Z’s as !� =	+� + +�,�� +⋯+ +-,-� +	5�             (19) 

where 5�  is the residual term of this regression and Z’s are 

some or all of the explanatory variables. 

Step 9: Compute ∅∗ from (18), where 

∅∗ = � m�n	h Qon	hp 	q → <S�	�ŋ�                  (20) 

where � = �	t	SɅ� , Ʌ is the percentage of outliers; 

+X = 	 �,v,���,v!U; I = 	,�,v,�; and ξ = 8	4 
If the computed ∅∗ value is greater than the critical <S,��	n�  

value, then we reject the hypothesis of homoscedasticity; 

otherwise we do not reject it. 

2.7. Criteria for Comparison of Test Statistics 

To compare the proposed modified procedure with existing 

tests for heteroscedasticity, the probability value (p-value) of 

all test statistics were computed and used to determine which 

of the test statistic outperforms the other. 

3. Data Analysis and Discussion of 

Results 

3.1. Simulation Study 

3.1.1. Simple Linear Regression Case 

A simple but interesting heteroscedastic variance problem 

where the variance is the square of the mean of the response 

variable is considered. Consider a simple linear model: �	 = 	7	 + 	3	�	 + 	|                         (21) 

The values of X are being taken equally spaced such as 1, 

2, …, 10 and these values are replicated two times to get a 

sample sizes of 20. The random errors from Normal 

distributions with mean 0 and standard deviations X, 2X 

and 3X were generated. The outliers in the error term were 

introduced in every 20th, 10th and 5th positions to generate 

5, 10 and 20% outliers respectively. The magnitude of the 

outlier is 4 times the standard deviation of the original 

errors. 

The six methods of detecting heteroscedasticity under 

study were then applied to the simulated data. The methods 

compared are the Modified Breusch–Pagan (MBP) test, the 

conventional Goldfeld–Quandt (GQ) test, Breusch–Pagan–

Godfrey (BPG) test, White’s General Heteroscedasticity 

(WGH) test and two other robust methods called the 

Modified Goldfeld–Quandt (MGQ) test of Rana et al [10], 

and the Robust Goldfeld–Quandt test (MGQ) of Alih and 

Ong [1]. The results obtained are presented in Tables 1 – 3. 

Table 1. Heteroscedasticity diagnostics for simple linear regression simulated data �	 = ��. 
Test procedure 

Without outliers With 5% outliers With 10% outliers With 20% outliers 

Test statistic P–value Test statistic P–value Test statistic P–value Test statistic P–value 

MBP 5.4064 0.0349 14.035 0.0007 9.4303 0.0009 13.939 0.0002 

RGQ 5.4401 0.0124 3.8700 0.1128 7.3348 0.0054 3.1189 0.3433 

MGQ 9.3250 0.0008 8.0806 0.0254 4.1022 0.4389 3.1249 0.3311 

BPG 6.1617 0.0131 7.495 0.0062 6.9559 0.0084 3.209 0.2416 

GQ 0.8309 0.6002 0.6207 0.7424 0.4261 0.8755 0.7324 0.6649 

WGH 24.258 0.0188 21.942 0.0382 16.272 0.1791 13.845 0.2013 
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Table 2. Heteroscedasticity diagnostics for simple linear regression simulated data �	 = 2��. 
Test procedure 

Without outliers With 5% outliers With 10% outliers With 20% outliers 

Test statistic P–value Test statistic P–value Test statistic P–value Test statistic P–value 

MBP 6.1127 0.0134 16.721 0.0012 17.221 0.0004 9.0282 0.0027 

RGQ 5.2209 0.0093 7.8767 0.0408 4.2248 0.0784 3.0909 0.4583 

MGQ 3.1750 0.3248 9.1806 0.0144 3.1055 0.1889 2.1229 0.0213 

BPG 8.3359 0.0039 5.6617 0.0173 4.9478 0.0261 2.0786 0.7801 

GQ 0.6573 0.7167 0.6652 0.7112 2.5335 0.1051 1.1837 0.4086 

WGH 32.141 0.0013 26.316 0.0097 18.549 0.1000 7.1472 0.1266 

Table 3. Heteroscedasticity diagnostics for simple linear regression simulated data �	 = 3�). 

Test procedure 
Without outliers With 5% outliers With 10% outliers With 20% outliers 

Test statistic P–value Test statistic P–value Test statistic P–value Test statistic P–value 

MBP 6.1127 0.0134 12.215 0.0005 11.426 0.0007 12.739 0.0037 

RGQ 14.436 0.0082 10.876 0.0098 4.1228 0.0973 3.7681 0.0986 

MGQ 5.8450 0.0248 10.806 0.0034 2.1011 0.0789 1.1109 0.2113 

BPG 10.236 0.0014 5.5736 0.0182 8.4362 0.0036 4.8526 0.1276 

GQ 0.9876 0.4231 0.7832 0.631 0.321 0.9357 1.1261 0.4353 

WGH 41.876 0.0008 21.840 0.0394 25.464 0.0128 2.3219 0.2259 

 

From the results obtained in Tables 1 – 3, the BPG, WGH 

test, MGQ and RGQ tests were able to detect 

heteroscedasticity as much as the proposed (MBP test) 

method could detect it when the data were free of outliers, 

except the GQ test. However, when applied to data with 

regression outliers, the conventional BPG and WGH tests are 

inconsistence in detecting heteroscedasticity at 5 and 10 

percent levels of outliers, and could not detect 

heteroscedasticity at 20 percent. The proposed method was 

able to detect heteroscedasticity at all levels of outliers, while 

the RGQ and MGQ tests were able to detect 

heteroscedasticity in the presence of 5% outliers but became 

inconsistent at 10% and failed outrightly when the percentage 

level of outliers is at least 20 percent. 

3.1.2. Multiple Linear Regression Case 

The study further draws a sample of size 30 for two 

explanatory variables and a response variable to show the 

inconsistencies and ineffectiveness of existing and previously 

modified tests for heteroscedasticity, in the presence of 

outliers. The data were drawn as follows. 

Two predictors were originally generated from a uniform 

distribution as x1i ~ U(30,3,6) and x2i ~ U(30, 6,12). Their means 

were obtained as }̅�� = 4.3898 and }̅��  = 8.4754. The target 

predictors were then simulated from a normal distribution as xi1 

~ N(30, 4.3898, σ
2
 = x11) + ei; xi2 ~ N(30, 8.4754, σ

2
 = x21) + ei. 

The response variable was generated as yi = xi1 + xi2 + eyi, where 

ei ~ N(30, 10, 1) and eyi ~ N(30, 0,1). It is obvious that the data 

set is heteroscedastic since the variance of the target predictors 

xi1 and xi2 varies from x1i to x1n and x2i to x2n for x1i and x2i, 

respectively. Then, k-outliers at xi1 = xi2 = yi = 10 − 0.5(j − 1), j = 

1,..., k, were planted in the data. The performance of the MBP 

test, RGQ test, MGQ test, GQ test, BPG test and whites test 

were evaluated at k = 0%, 10%, 20% and 30% of the sample 

size and the results are recorded in Table 4. 

Table 4. Heteroscedasticity diagnostics for multiple linear regression simulated data. 

Test procedure 
Without outliers With 10% outliers With 20% outliers With 30% outliers 

Test statistic P–value Test statistic P–value Test statistic P–value Test statistic P–value 

MBP 11.123 0.0038 11.091 0.0039 11.041 0.0041 11.002 0.0043 

RGQ 7.0099 0.0004 4.0419 0.0698 3.5124 0.0561 2.4621 0.1276 

MGQ 12.142 0.0023 1.8098 0.1398 2.3659 0.5132 1.7128 0.1636 

BPG 7.3746 0.0044 5.2437 0.0727 5.5885 0.0612 1.3503 0.5091 

GQ 12.131 0.0022 1.2702 0.3426 0.6650 0.7548 1.3587 0.3019 

Whites 31.443 0.0051 27.471 0.8455 25.939 0.8921 33.986 0.5647 

 

From the results in Table 4, the conventional tests, the 

MGQ and RGQ tests were able to detect heteroscedasticity as 

much as the proposed (MBP test) method could detect it 

when the data were free of outliers. However, when applied 

to data with regression outliers, the conventional methods as 

well as the MGQ and RGQ tests failed to detect 

heteroscedasticity at all levels of outliers, whereas our 

proposed method was able to detect it. 

3.1.3. Simulation Experiment for Level of 

Heteroscedasticity 

In the simulation study, the ‘good’ observations are 

generated according to linear regression model: �� =	�] + ����� + ����� +		��� 	
 = 1, 2, … , � 

where �� 	~	��0, 1�  and �K����P = 0	∀	
	 ≠ � . To generate a 

heteroscedastic regression model, we consider 	�� =	� exp�8 }�� + 	8}��� �  where 	� = 1  and 8  is an arbitrary 

constant. The covariate values are selected as random draws 

from the U(0,1) distribution. The level of heteroscedasticity 

is measured as " = max�	��� /min�	�� ), 
 = 1, 2, … , � . For 

each sample sizes a is set as a = 0.2, 1.0 and 1.8, which 

yield 	"	 ≈ 0.1, 0.5 and 0.9 respectively. The values of the 
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regression parameters used in the data generation scheme are �] =	�� =	�� = 1 . The contaminated model was then 

generated. At each step, one ‘good’ observation is substituted 

with an outlier. The study focused on the situation where the 

errors are contaminated normal distribution. To generate a 

certain percentages of outliers, we use the regression model �� =	�] + ����� + ����� +		���������	
 = 1, 2, … , � 

where ��������	~	��0, 1� + 	�8�)ℎ:	�0, 10�. The percentages 

of outliers were varied, and since Cauchy is a longer tailed 

distribution, it is believed that the contaminated normal 

errors produced outliers. 

All simulations were performed for m = 1000 replicates for 

sample sizes n = 20, 40, 60 and 100. A power analysis of the 

results obtained is presented in Tables 5 to 8. 

Table 5. Simulation results of heteroscedasticity tests for sample size 20 (n = 20). 

Test 
� = �. �  � = �. �  � = �. �  

k = 5% k = 10% k = 20% k = 5% k = 10% k = 20% k = 5% k = 10% k = 20% 

MBP 0.9929 0.9762 0.9852 0.9987 0.9758 0.9500 0.9858 0.9930 0.9988 

RGQ 0.5287 0.2354 0.6745 0.6204 0.5580 0.1234 0.7623 0.4144 0.3230 

MGQ 0.8453 0.9526 0.2187 0.8102 0.4351 0.1008 0.8842 0.0322 0.0827 

BPG 0.0041 0.0000 0.0000 0.2132 0.0189 0.0000 0.4321 02367 0.0000 

GQ 0.8450 0.2824 0.0020 0.8500 0.1423 0.0032 0.8628 0.2451 0.0098 

Whites 0.0000 0.0000 0.0000 0.0002 0.0018 0.0000 0.0003 0.0345 0.0000 

Table 6. Simulation results of heteroscedasticity tests for sample size 40 (n = 40). 

Test 
� = �. �  � = �. �  � = �. �  

k = 5% k = 10% k = 20% k = 5% k = 10% k = 20% k = 5% k = 10% k = 20% 

MBP 0.9856 0.9930 0.8938 0.9750 0.9910 0.9176 0.9772 0.9912 0.9084 

RGQ 0.9299 0.8073 0.5342 0.7967 0.8137 0.3125 0.8792 0.6997 0.1023 

MGQ 0.8329 0.7761 0.2041 0.9720 0.3824 0.3680 0.9746 0.3680 0.2456 

BPG 0.0023 0.0000 0.0000 0.0000 0.0000 0.0065 0.5461 0.0014 0.0000 

GQ 0.5783 0.0589 0.0023 0.5836 0.0578 0.0034 0.5712 0.0630 0.0007 

Whites 0.0004 0.0000 0.0002 0.0000 0.0003 0.0000 0.0012 0.0000 0.0000 

Table 7. Simulation results of heteroscedasticity tests for sample size 60 (n = 60). 

Test 
� = �. �  � = �. �  � = �. �  

k = 5% k = 10% k = 20% k = 5% k = 10% k = 20% k = 5% k = 10% k = 20% 

MBP 0.9952 0.9988 0.9998 0.9970 0.9992 0.9871 0.9966 0.9994 1.0000 

RGQ 0.9576 0.6781 0.3241 0.8998 0.2313 0.8765 0.8145 0.7915 0.3344 

MGQ 0.9456 0.5876 0.0021 0.8000 0.0058 0.3998 0.6314 0.5678 0.0057 

BPG 0.2256 0.0031 0.0000 0.0712 0.0000 0.0000 0.3834 0.0094 0.0000 

GQ 0.9320 0..0229 0.0051 0.1220 0.0452 0.0039 0.4453 0.3240 0.0098 

Whites 0.0000 0.0000 0.0408 0.0000 0.0980 0.0000 0.0000 0.0000 0.0200 

Table 8. Simulation results of heteroscedasticity tests for sample size 100 (n = 100). 

Test 
� = �. � � = �. � � = �. � 

k = 5% k = 10% k = 20% k = 5% k = 10% k = 20% k = 5% k = 10% k = 20% 

MBP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

RGQ 0.9116 0.8003 0.4712 0.9328 0.8145 0.5012 0.7915 0.5801 0.2241 

MGQ 0.9507 0.8123 0.0198 0.8714 0.0320 0.0415 0.8801 0.0421 0.0002 

BPG 0.0000 0.0043 0.6512 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

GQ 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

Whites 0.0009 0.0000 0.0000 0.0000 0.2020 0.0000 0.0000 0.2014 0.0000 

 

From the results in Tables 5 to 8, all the three conventional 

methods considered performed poorly in the simulation 

study; the GQ test performed relatively well for 5% outliers, 

while the performance of the BPG and WGH tests were very 

poor. The MGQ and RGQ tests performs very well for 5% 

level of outliers, inconsistent when k = 10% and very poor 

when k = 20%. 

But the proposed modified procedure, the Modified 

Breusch-Pagan test performs superbly well throughout. For 

small sample size (n = 20) and lower contamination (5%), its 

performance was similar to the GQ, MGQ, and RGQ tests. 

Also, the MBP test performed like the MGQ and RGQ tests 

at 10% level of contamination, but its power tends to increase 

with increase in sample size. It was also observed that the test 

is robust in the sense that it performs exactly in the same way 

when outliers occur in a data with different levels of error 

variances. Thus, the Modified Breusch-Pagan test 

outperformed the conventional and previously modified tests 

considered in this study in every respect and is proved to be 

best overall. 

3.2. Numerical Illustrations 

Two data sets that have been widely utilized to test for 
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heteroscedasticity in the literature are used for comparison 

purpose in this section. The proposed procedure is evaluated 

and compared to other existing methods for detecting 

heteroscedasticity in regression models using these two data 

sets as a benchmark. Variables that are heteroscedastic in 

nature define these data sets. The proposed method was 

compared with the various approaches under this study 

before and after outliers were introduced into the data. 

3.2.1. Housing Expenditure Data 

Pindyck and Rubinfeld [9] described the data in Table 9 in 

Econometric Models and Economic Forecasts as detailing 

housing expenditure for four different groups, each with five 

sample points, resulting in the 20 observations that make up 

the study data. These data were also utilized to investigate the 

performance of heteroscedasticity diagnostics in the presence 

of outliers by Rana et al., [10] and Alih and Ong [1]. 

Table 9. Housing expenditure data. 

Index (i) 
Income 

(xi) 

Housing 

Exp. (yi) 
Index (i) 

Income 

(xi) 

Housing 

Exp. (yi) 

1 5 1.8  15 4.2 

2 5 2  15 4.2 

3 5 2  15 4.5 

4 5 2  15 4.8 

5 5 2.1  15 5 

6 10 3.1  20 4.8 

7 10 3.2  20 5 

8 10 3.5  20 5.7 

9 10 3.5  20 6 

10 10 3.6  20 6.2 

A residual plot of the data in Table 9 as shown in Figure 1 

was able to discover heteroscedasticity, since the graph 

mirrors a typical megaphone shape. 

 

Figure 1. Fitted values vs. residual plot for housing expenditure original 

data. 

Now, as indicated in Table 10, observations 1 and 20 were 

replaced with regression outliers. 

Table 10. Housing expenditure data with 10% outliers. 

Index (i) 
Income 

(xi) 

Housing 

Exp. (yi) 
Index (i) 

Income 

(xi) 

Housing 

Exp. (yi) 

1 5 1.8 (4.9)  15 4.2 

2 5 2  15 4.2 

3 5 2  15 4.5 

4 5 2  15 4.8 

5 5 2.1  15 5 

6 10 3.1  20 4.8 

7 10 3.2  20 5 

8 10 3.5  20 5.7 

9 10 3.5  20 6 

10 10 3.6  20 6.2 (2.0) 

 

Figure 2. Fitted values vs. residual plot for housing expenditure data with 

10% outliers. 

 

Figure 3. Fitted values vs. residual plot for housing expenditure data with 

20% outliers. 
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Figure 4. Fitted values vs. residual plot for housing expenditure data with 

30% outliers. 

Due to the existence of outliers planted at index numbers 1 

and 20, the megaphone shape in Figure 1 dwindled as shown 

in Figure 2. As a result, it is reasonable to conclude that the 

presence of outliers has an impact on diagnostic plots for 

heteroscedasticity. 

Furthermore, two more outliers (for 20% outliers) and another 

two (for 30% outliers) were planted in the data set in Table 10. 

Their residual plots are shown in Figures 3 and 4 respectively. 

The data was then subjected to the six approaches for 

detecting heteroscedasticity under investigation, both before 

and after the outliers were introduced. 

Table 11 shows that when the data were free of outliers, 

the conventional tests, the MGQ and the RGQ tests were all 

able to detect heteroscedasticity as well as the proposed 

(MBP test) technique. All conventional tests, however, failed 

to detect heteroscedasticity at all levels of outliers when 

applied to data with regression outliers, while the RGQ and 

MGQ tests were able to detect heteroscedasticity in the 

presence of only 10% outliers, but failed at 20 and 30 percent 

levels. But the proposed method (MBP test) was able to 

detect heteroscedasticity at all levels of outliers. 

 

Figure 5. Fitted values vs. residual plot for Restaurant food sales original 

data. 

Table 11. Heteroscedasticity diagnostics for housing expenditure data. 

Test procedure 
Without outliers With 10% outliers With 20% outliers With 30% outliers 

Test statistic P–value Test statistic P–value Test statistic P–value Test statistic P–value 

MBP 9.5814 0.0020 9.1395 0.0025 8.4533 0.0036 8.0076 0.0047 

RGQ 4.4436 0.0184 5.8767 0.0108 3.1548 0.0954 2.0089 0.4286 

MGQ 5.8450 0.0248 10.806 0.0034 2.1011 0.0789 1.1109 0.2113 

BPG 7.1921 0.0073 0.8529 0.3557 0.1099 0.7403 0.0002 0.9895 

GQ 8.5763 0.0032 1.5558 0.2731 1.1109 0.4427 0.8843 0.5669 

Whites 28.929 0.0039 23.073 0.0868 20.642 0.0559 17.497 0.1318 

 

3.2.2. Restaurant Food Sales Data 

Montgomery et al. [8]’s data on restaurant food sales as 

shown in Table 12 in the Introduction to Linear Regression 

Analysis shows that there is a relationship between revenue 

and advertising expense. The variance variability is clearly 

seen in a residual plot of the data in Table 12 (as illustrated in 

Figure 5). By substituting the income of the cases indexed by 

1, 29, and 30 with regression outliers as shown in Table 13, 

three outliers were purposefully introduced into the data set 

(modified values are presented within the parentheses). 

Table 12. Restaurant food sales data. 

Index (i) Adv. Exp. (xi) Income (yi) Index (i) Adv. Exp. (xi) Income (yi) 

1 3000 81464  12310 146630 

2 3150 72661  13700 147041 

3 3085 72344  15000 179021 

4 5225 90743  15175 166200 

5 5350 98588  14995 180732 

6 6090 96507  15050 178187 

7 8925 126574  15200 185304 
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Index (i) Adv. Exp. (xi) Income (yi) Index (i) Adv. Exp. (xi) Income (yi) 

8 9015 114133  15150 155931 

9 8885 115814  16800 172579 

10 8950 123181  16500 188851 

11 9000 131434  17830 192424 

12 11345 140564  19500 203112 

13 12275 151352  19,200 192482 

14 12400 146926  19000 218715 

15 12525 130963  19350 214317 

Table 13. Restaurant food sales data with 10% outliers. 

Index (i) Adv. Exp. (xi) Income (yi) Index (i) Adv. Exp. (xi) Income (yi) 

1 3000 81464 (814644)  12310 146630 (546630) 

2 3150 72661  13700 147041 

3 3085 72344  15000 179021 

4 5225 90743  15175 166200 

5 5350 98588  14995 180732 

6 6090 96507  15050 178187 

7 8925 126574  15200 185304 

8 9015 114133  15150 155931 

9 8885 115814  16800 172579 

10 8950 123181  16500 188851 

11 9000 131434  17830 192424 

12 11345 140564  19500 203112 

13 12275 151352  19,200 192482 

14 12400 146926  19000 218715 

15 12525 130963  19350 214317 (21431) 

 

The effect of outliers planted at index 1, 16 and 30 in 

the above data shows that there is no more 

heteroscedasticity in the data, from the residual plot 

obtained, as shown in Figure 6. 

 

Figure 6. Fitted values vs. residual plot for Restaurant food sales data with 

10% outliers. 

Three more outliers (for 20% outliers) were further planted 

in the data set in Table 13 and another three (for 30% 

outliers). Their residual plots are shown in Figures 7 and 8 

respectively. 

The results obtained in Table 14 shows that the 

conventional tests, the MGQ and RGQ tests were able to 

detect heteroscedasticity as much as the proposed MBP test 

could detect it when the data were free of outliers. However, 

when applied to data with regression outliers, the GQ test 

failed to detect heteroscedasticity at all levels of outliers. The 

proposed method and the BPG tests were able to detect 

heteroscedasticity at all levels of outliers, while the RGQ and 

MGQ tests were able to detect heteroscedasticity in the 

presence of 10% outliers, but failed at 20 and 30 percent 

levels. The WGH test was able to detect heteroscedasticity at 

20 and 30 percents level of outliers, but failed at 10%. 

 

Figure 7. Fitted values vs. residual plot for Restaurant food sales data with 

20% outliers. 
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Table 14. Heteroscedasticity diagnostics for Restaurant food sales data. 

Test procedure 
Without outliers With 10% outliers With 20% outliers With 30% outliers 

Test statistic P–value Test statistic P–value Test statistic P–value Test statistic P–value 

MBP 8.8731 0.0028 8.7421 0.0031 8.1956 0.0041 8.0896 0.0045 

RGQ 5.1179 0.0021 4.2389 0.0080 3.1194 0.0838 2.1019 0.1230 

MGQ 4.9917 0.0090 10.457 0.0005 1.1189 0.3501 2.1231 0.2416 

BPG 25.534 4.3e-07 10.737 0.0011 11.281 0.0007 14.067 0.0002 

GQ 14.878 1.0e-05 0.3641 0.9601 0.2627 0.9889 0.3697 0.9578 

Whites 34.629 0.0005 20.356 0.0606 36.433 0.0003 39.160 0.0001 

 

Figure 8. Fitted values vs. residual plot for Restaurant food sales data with 30% outliers. 

4. Conclusion 

The impact of outliers on the detection of 

heteroscedasticity in a data set by existing methods in 

literature was addressed in this study. The study further 

examined two modified procedures that have significantly 

improved the detection of heteroscedasticity in the 

presence of outliers but, however found them to be 

inconsistence or unable to detect heteroscedasticity 

especially when the level of outliers is greater than 10%. 

Thus, the research developed an algorithm by modifying 

the Breusch-Pagan test to suitably detect 

heteroscedasticity whether or not outliers are present in a 

data set at any level of contamination. The method was 

compared with existing and previously modified methods 

using Monte Carlo simulations and real life data, and a 

significant improvement was achieved. 
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