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Abstract: In this paper, a higher-order numerical method is presented for solving the singularly perturbed delay differential 

equations. Such kind of equations have a delay parameter on reaction term and exhibits twin boundary layers or oscillatory 

behavior. Recently, different numerical methods have been developed to solve the singularly perturbed delay reaction-diffusion 

problems. However, the obtained accuracy and its rate of convergence are satisfactory. Thus, to solve the considered problem 

with more satisfactory accuracy and a higher rate of convergence, the higher-order numerical method is presented. First, the 

given singularly perturbed delay differential equation is transformed to asymptotically equivalent singularly perturbed two-

point boundary value convection-diffusion differential equation by using Taylor series approximations. Then, the constructed 

singularly perturbed boundary value differential equation is replaced by three-term recurrence relation finite difference 

approximations. The Richardson extrapolation technique is applied to accelerate the fourth-order convergent of the developed 

method to the sixth-order convergent. The consistency and stability of the formulated method have been investigated very well 

to guarantee the convergence of the method. The rate of convergence for both the theoretical and numerical have been proven 

and are observed to be in accord with each other. To demonstrate the efficiency of the method, different model examples have 

been considered and simulation of numerical results have been presented by using MATLAB software. Numerical 

experimentation has been done and the results are presented for different values of the parameters. Further, The obtained 

numerical results described that the finding of the present method is more accurate than the findings of some methods 

discussed in the literature.  

Keywords: Singularly Perturbed Problems, Delay Reaction-Diffusion Type, Accurate Solution, Higher-Order Method 

 

1. Introduction 

The particularity of noticing the relation between causes 

and effects arises when the cause is small and the effect is 

large. In the philosophy of perturbation for mathematics and 

physical systems, the study of this relation got a significant 

amount of attention in past and recent years. A singularly 

perturbed differential equation is a differential equation in 

which the highest order derivative is multiplied by a small 

parameter that is recognized as a perturbation parameter. The 

solution of singularly perturbed differential equations varies 

rapidly in the regions called boundary layers. The study of 

the solution of these equations is of great significance due to 

the formation of sharp boundary layers when the perturbation 

parameter approaches zero. Singularly perturbed delay 

differential equation is an equation in which the evolution of 

the system at a convinced time depends on the rate at an 

earlier time. 

The delay in the process rises due to the requirement of a 

definite time to sense the instruction and react to it. The delay 

differential equation can be classified as retarded delay 

differential equation and neutral differential equation. The 

applications of delay differential equations arise in the 

modeling of neural variables, variational problems in control 

theory, description of human pupil reflex, physical and 

biological phenomena like optically bi-stable devices, 

numerical modeling in biosciences, and HIV infection [1-5]. 

In singular perturbation problems, when the perturbation 

parameter equal to zero and if the order is reduced by one then 

the problem is called convection-diffusion type, whereas if the 
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order is reduced by two it is called reaction-diffusion type. 

Hence, second-order singularly perturbed delay differential 

equations are may be convection-diffusion or reaction-diffusion 

types. The former type of problem exhibits left or right boundary 

layer only depending on the sign of coefficient in diffusion and 

convection terms, while reaction-diffusion delay differential 

equations have dual boundary layers (both at the left and right 

side of the domain) or oscillatory behavior of solution depending 

on the sign of the sum of coefficients in reaction terms. 

Researchers have been developed and analyzed different 

numerical methods for solving singularly perturbed delay 

differential equations. For instance, numerical methods proposed 

by various authors for solving singularly perturbed delay 

differential equations of convection-diffusion type are; 

Parameter-robust numerical method based on defect-correction 

technique [6], Fitted mesh numerical method [7], Numerical 

integration method [8], using B-Spline collocation method [9], 

Fitted Method [10], Terminal boundary-value technique [11], 

Numerical integration using exponential integrating factor [12], 

Fitted fourth-order scheme [13] and A non-asymptotic method 

for general singular perturbation problems [20] so on. Further, 

more recently, various authors have developed numerical 

methods for solving singularly perturbed delay reaction-

diffusion problems like; Computational method [14-17], a 

fourth-order numerical method [18], trigonometric B-spline [4], 

and Computational method for singularly perturbed delay differential 

equations of the reaction-diffusion type with negative shift [22]. 

All these works concern second-order singularly perturbed 

delay differential equations in which the developed methods 

are analyzed in different approaches and produce good 

accurate numerical solutions corresponding with a diverse rate 

of convergence to demonstrate the efficiency of the methods. 

However, the obtained approximate solution and the 

corresponding order of convergence are not more satisfactory 

which indicates that yet to solve singularly perturbed delay 

reaction-diffusion problems demands to develop of other 

numerical methods to produce a more accurate numerical 

solution. Therefore, the main objective of this paper is to 

present a higher-order numerical method to solve the 

singularly perturbed delay reaction-diffusion problems. 

2. Formulation of the Method 

Consider the singularly perturbed delay reaction-diffusion 

problem: 

( )( ) ( ) ( ) ( ) ( ) ( ), : 0,1y x a x y x b x y x g xε δ′′ + − + = Ω = ,  (1) 

subject to the interval and boundary conditions, 

( ) ( ), 0y x x xφ δ= − ≤ ≤ 	and (1)y β= ,             (2) 

where ε  is perturbation parameter satisfies 0 1ε< << with the 

delay parameter ( ),oδ ε=  ( )xφ  is sufficiently smooth on 

[ 1,0]−  and β is a given constant which is independent of ε. 

Further, coefficient functions ( ), ( ),a x b x  and the source 

function ( )g x  are assumed to be sufficiently differentiable 

functions on the closed domain Ω . The layer or oscillatory 

behavior of the problem under consideration is conserved for

0δ ≠ , but sufficiently small, depending on the sign of

( ) ( )a x b x+ , for all x ∈ Ω . If ( ) ( ) 0a x b x+ <  then the solution 

of equations (1) and (2) exhibits two boundary layer behavior 

which will occur at both endpoints 0x =  and 1x = , while

( ) ( ) 0a x b x+ > , it exhibits oscillatory behavior, [4, 5, 16]. 

Taylor’s series is familiar to handle the delay term as 

2
3( ) ( ) ( ) ( ) ( )

2
y x y x y x y x O

δ′ ′′− δ = − δ + + δ .      (3) 

Substituting equation (3) into equation (1), gives:  

( ) ( ) ( ) ( ) ( ) ( )y x p x y x q x y x f xε ′′ ′+ + = ,           (4) 

under the boundary conditions 

(0) (0)y φ= 	and (1)y β= ,                   (5) 

where
2

2 ( )
( )

2 ( )

a x
p x

a x

− εδ=
ε + δ

, 
( )

2

2 ( ) ( )
( )

2 ( )

a x b x
q x

a x

ε +
=

ε + δ
 and

2

2 ( )
( )

2 ( )

g x
f x

a x

ε=
ε + δ

. 

To develop the finite difference method for the problem in 

equation (4), the interval [0,1]  is divided into N subintervals 

with a mesh length of each
1

h
N

= . Form this, we obtain a set 

of grid points, 0 0, 1Nx x= =  and 0 ,ix x ih= + for

1, 2,..., 1i N= − . For convenience, let denote ( )i ip x p=

( ) ,i iq x q= ( ) ,i iy x y= ( ) ,...,i iy x y′ ′= ( ) ( )( )n n
i iy x y= . 

Assume that ( )y x has continuous higher-order derivatives on 

[0,1],  using Taylor’s series expansion, we have: 

2 3 4 5 6
(4) (5) (6)

1 ...
2! 3! 4! 5! 6!

i i i i i i i i

h h h h h
y y hy y y y y y+ ′ ′′ ′′′= + + + + + + +  (6) 

2 3 4 5 6
(4) (5) (6)

1 ...
2! 3! 4! 5! 6!

i i i i i i i i

h h h h h
y y hy y y y y y− ′ ′′ ′′′= − + − + − + +  (7) 

Subtracting equation (7) from equation (6) or adding the 

two equations, we yield 

2
1 1

1
2 6

i i
i i

y y h
y y

h
τ+ −−′ ′′′= − +  

or 

2
(4)1 1

22

2

12

i i i
i i

y y y h
y y

h
τ+ −− +′′ = − +                (8) 

where 
4

(5)
1

120
i

h
yτ = −  and 

4
(6)

2
360

i

h
yτ −= . 

Substituting equation (8) into the discrete form of equation 

(4) gives: 



 Pure and Applied Mathematics Journal 2021; 10(3): 68-76 70 

 

2 2
(4)

1 1 1 1 02
( 2 ) ( )

2 6 12 i

i i
i i i i i i i i i

p p h h
y y y y y q y y y f

hh

ε ε τ+ − + − ′′′− + + − + − − + =  (9) 

where 0 1 2ipτ τ ετ= + . 

Once and twice successively differentiating both sides of 

equation (4), concerning the independent variable and 

considering at the nodal point ix , yields (4)andi iy y′′′
respectively. Then substituting these values into equation (9), 

gives the three-term recurrence relation of the form:  

1 1 , 1, 2,..., 1i i i i i i iE y F y G y H i N− +− + = = − ,      (10) 

where 
2

2

2
( 2 ) ( )

12 12 2 24 24

i i i i i
i i i i i

p q p p p hh
E p q p q

hh

ε
ε ε

′ +  ′′ ′ ′= + + − + + + + 
 

, 

2 2 2

2

2
2 ,

12 12 12 12

i i i i i i
i i

p q p h q p q h
F q

h

ε
ε ε

   ′ ′′ ′+
   = + + − + +
   
   

 

2

2

2
( 2 ) ( )

12 12 2 24 24

i i i i i
i i i i i

p q p p p hh
G p q p q

hh

ε
ε ε

′ +  ′′ ′ ′= + + + + + + + 
 

, 

2 2

12 12

i
i i i i

p h h
H f f f

ε
′ ′′= + + . 

3. Richardson Extrapolation 

The purpose of this section is to improve the accuracy and 

the order of convergence by convergence acceleration 

technique which involves a combination of two computed 

approximate solutions. The linear combination turns out to be 

a better approximation, [24, 26]. 

Ever since from equation (8) or equation (9), we know that 

the truncation error of the formulated method is 4( )O h . 

Hence, we have 

( )4( )i Ny x Y C h− ≤ ,                         (11) 

where ( ) andi Ny x Y  are exact and approximate solutions 

respectively, C is a constant independent of mesh sizes h . 

Let 2NΩ  be the mesh obtained by bisecting each mesh 

interval in NΩ  and denote the approximation of the solution 

on 2NΩ  by 2NY . Consider equation (10) works for any mesh 

size 0h ≠ , which indicates: 

4( ) ,N N
i N iy x Y C xh R− ≤ + ∈ Ω .               (12) 

So, it works for any mesh size 0
2

h ≠  leads to 

4
2 2

2( ) ,
16

N N
i N i

h
y x Y C xR− ≤ + ∈ Ω ,            (13) 

where the remainders, N
R and 2N

R  are 6( )O h . 

Assume that C is a constant in both equations (12) and 

(13), we multiply equation (13) by 16, and then combining 

the two inequalities in equations (12) and (13) gives 

( ) 2
215 ( ) 16 16 .N N

i N Ny x Y Y R R− − ≤ −  

This can be re-written as 

( ) ( )2
2

1 1
( ) 16 16 ,

15 15
N N

i N Ny x Y Y R R− − ≤ −  

and further by notation 

( ) ( )2

1
16

15

ext

N N NY Y Y= − ,                   (14) 

is also an approximation to the exact solution ( )iy x . Hence, 

using the approximate solution in equation (14), and the 

truncation terms in equations (12) and (13), we further obtain 

the truncation error: 

( ) 6( )
ext

i Ny x Y Ch− ≤ .                  (15) 

This indicates that the Richardson extrapolation method 

accelerates the order of convergence from fourth-order to 

sixth-order. 

4. Consistency of the Method 

Local truncation error refers to the difference between the 

differential equation and its finite difference approximations. 

A finite difference scheme is consistent if the limit of 

truncation error (TE) is equal to zero as the mesh size h goes 

to zero. Further, local truncation errors measure how well a 

finite difference discretization approximates the differential 

equation [19, 21, 23-26]. 

Truncation error (TE ) from equations (8) and (9) becomes 

4 4
(5) (6) 4 (5) (6)

0 1 2
120 360 120 360

i i
i i i i i

p h ph
p y y h y y

ε ετ τ ετ  = + = − − = − + 
 

, 

then, it is possible to show that 

(5) (6)4 40 1 1
( )

( ) ( ) , ,
120 360

i
i i i i i

p
TE h Ch x xy y − +

ξ ε = τ = − ξ + ξ ≤ < ξ < 
 

,                             (16) 

where 
1 1

(5) (6)( )
max ( ) ( )

120 360i i i

i

i i
x x

p
C y y

ξ

ξ εξ ξ
− +< <

 = − + 
 

 is constant. 

This implies that the developed method is accurate in order four. Hence, from the definition of consistency, both the 

truncation errors in equations (15) and (16) satisfy: 
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4 6

0 0 0
lim lim lim 0
h h h

TE Ch Ch
→ → →

= = = . 

Thus, the proposed method is consistent, (See [24]). 

5. Stability of the Method 

Consider the developed scheme in equation (10) which is given by: 

1 1i i i i i i iE y F y G y H− +− + = . 

If we multiply both sides of equation (10) by 2h and taking a limit as 0h → , the coefficient functions: 

2
2

20 0

2
2

0

2
lim lim ( 2 ) ( ) ,

12 12 2 24 24

2
lim ( 2 ) ( ) .

12 12 2 24 24

i i i i i
i i i i i

h h

i i i i i
i i i i

h

p q p p p hh
E h p q p q

hh

p q p p p hh
h p q p q

h

ε
ε ε

ε ε
ε ε

→ →

→

 ′ + ′′ ′ ′ = + + − − + − +
 
 

 ′ + ′′ ′ ′ = + + − − + − + =
 
 

 

and 

2 2 2
2

20 0

2 2 2
2

0

2
lim 2 lim ,

12 12 12 12

2
2 lim 2

12 12 12 12

i i i i i i
i i

h h

i i i i i i
i

h

p q p h q p q h
F h q

h

p q p h q p q h
h q

ε
ε ε

ε ε
ε ε

→ →

→

 ′ ′′ ′+
 = + + − − −
 
 

 ′ ′′ ′+
 = + + − − − =
 
 

Likewise, 
0

lim i
h

G ε
→

=  and 
0

lim 0i
h

H
→

= , for 1, 2, ... , 1i N= − . 

Hence, for sufficiently small h  we can get: 

, 2i i iE G Fε ε= = = , and 0iH = , for 1, 2, ... , 1i N= − . 

Thus, equation (10) becomes a system of equations that 

can be written in a matrix form of 

MY H= ,                                 (17) 

where the matrices: 

2 0 0

2 0

0 2 0 0

0 0 0

0 2

0 0 0 2

M

ε ε
ε ε ε

ε ε
ε

ε ε ε
ε ε

− 
 − 
 −

=  
 
 −
 

−  

⋯ ⋯

⋮ ⋮

⋱

⋱ ⋱

⋮ ⋮

⋯

, 

1

2

2

1

N

N

y

y

Y

y

y

−

−

 
 
 
 

=  
 
 
 
  

⋮

⋮

0

0

and

0

N

y

H

y

ε

ε

− 
 
 
 

=  
 
 
 
−  

⋮

⋮
 

Hence, the matrix M  is irreducible. 

0, 0i iE G> > and i i iF E G≥ + . 

This proves the diagonal dominant of M . Under these 

conditions, any tri-diagonal solver is stable for sufficiently 

small h, as shown in the book “Numerical solution of 

differential equations, Introduction to finite difference and 

finite element methods”, [19]. As proved by Smith [21], the 

eigenvalues of a tri-diagonal ( ) ( )1 1N N− × −  of matrix M 

are: 

2 cos 2 1 cos , 1, 2, . . . , 1s i i i

s s
F E G s N

N N

π πλ ε  = − = − = − 
 

 (18) 

From trigonometric identity, 21 cos 2sin
2

s s

N N

π π− = , 

eigenvalues of matrix M can be re-written as: 

2 22 2sin 4 sin 4
2 2

s

s s

N N

π πλ ε ε ε = = ≤ 
 

.     (19) 

A finite difference method for solving differential 

equations is stable if M is invertible and 

1 CM
− ≤ , 00 h h∀ < < ,                 (20) 

where C and 0h are two constants that are independent of h , 

[19, 21]. 

Since matrix M is symmetric also its inverse matrix 1
M

−
 is 

symmetric and the eigenvalues 1
M

− are given by
1

sλ
, we have 

1 1 1
,

4s

CM
− = = ≤

λ ε
where C is independent of h. 
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Thus, the developed scheme in equation (10) is stable. 

A consistent and stable finite difference method is 

convergent by Lax's equivalence theorem. Hence, as we have 

shown above the proposed method is satisfying the criteria 

for both consistency and stability which are equivalents to 

the convergence of the method. 

Table 1. The maximum absolute errors for Example 1, when 0.5δ ε= . 

↓ε  4
2=N  5

2N =  6
2N =  7

2N =  8
2N =  

Our method      

4
2

−  1.2780e-08 2.0643e-10 3.2591e-12 3.9108e-13 8.5487e-15 

5
2

−  9.1840e-08 1.5860e-09 2.5205e-11 3.9610e-13 1.1824e-14 

6
2

−  6.8073e-07 1.2266e-08 1.9844e-10 3.1440e-12 4.9766e-14 

7
2

−  4.4400e-06 9.2032e-08 1.5775e-09 2.5078e-11 3.8966e-13 

8
2

−  2.0837e-05 6.8129e-07 1.2292e-08 1.9949e-10 3.1594e-12 

9
2

−  4.6493e-05 4.4755e-06 9.2891e-08 1.5859e-09 2.5213e-11 

10
2

−  1.3651e-04 2.1066e-05 6.8425e-07 1.2348e-08 2.0083e-10 

Results in [18]     

4
2

−  3.0267e-05 1.9031e-06 1.1950e-07 7.4728e-09 4.6725e-10 

5
2

−  1.1987e-04 7.8382e-06 4.9134e-07 3.0732e-08 1.9223e-09 

6
2

−  4.9863e-04 3.1795e-05 1.9986e-06 1.2579e-07 7.8649e-09 

7
2

−  1.9386e ‒ 03 1.2530e-04 8.1293e-06 5.0955e-07 3.1919e-08 

8
2

−  6.4424e-03 5.1006e-04 3.2516e-05 2.0492e-06 1.2889e-07 

9
2

−  1.7543e02 1.9764e-03 1.2772e-04 8.2523e-06 5.1725e-07 

10
2

−  3.8002e-02 6.557e-03 5.1492e-04 3.2824e-05 2.0727e-06 

Table 2. Comparison of maximum absolute error for Example 2 at 0.5=δ ε . 

↓ε  4
2h −=  5

2h −=  6
2h −=  7

2h −=  

Our Method    

4
2

−  4.4178e-10 6.9629e-12 1.1102e-13 2.5091e-14 

5
2

−  3.1135e-09 4.9464e-11 7.7482e-13 3.5527e-14 

6
2

−  2.2262e-08 3.6509e-10 5.7497e-12 8.4266e-14 

7
2

−  1.6638e-07 2.8212e-09 4.4965e-11 7.0516e-13 

8
2

−  1.2099e-06 2.1836e-08 3.5620e-10 5.6251e-12 

9
2

−  7.9665e-06 1.6541e-07 2.8101e-09 4.4750e-11 

10
2

−  3.7536e-05 1.2077e-06 2.1797e-08 3.5540e-10 

Results in [18]    

4
2

−  4.5775e-06 2.8651e-07 1.7913e-08 1.1197e-09 

5
2

−  1.6246e-05 1.0190e-06 6.3830e-08 3.9901e-09 

6
2

−  5.9281e-05 3.7757e-06 2.3632e-07 1.4791e-08 

7
2

−  2.2949e-04 1.4731e-05 9.2549e-07 5.7989e-08 

8
2

−  9.1215e-04 5.8144e-05 3.6824e-06 2.3104e-07 

9
2

−  3.5308e-03 2.2815e-04 1.4669e-05 9.2088e-07 

10
2

−  1.1709e-02 9.1043e-04 5.8034e-05 3.6736e-06 

 

6. Numerical Examples and Results 

To confirm the applicability of the formulated method, we 

have been realized the method on four examples, the first two 

with twin boundary layers, while the remaining with 

oscillatory behavior. Since these examples have no exact 

solution; consequently the numerical solutions are computed 

using the double mesh principle. The maximum absolute 

errors are calculated using the double-mesh principle before 

and after applying Richardson extrapolation is given by 
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2
[0,1]

max
i

N
N N

x
E Y Yε ∀ ∈

= − , and 

( ) ( ) ( )2
[0,1]

max
i

ext ext extN
N N

x
E Y Yε

∀ ∈
= −  respectively. 

The corresponding order of convergence is determined by
2log log

log 2

N N
N E E

P ε ε
ε

−
= . 

Example 1: Consider the singularly perturbed delay 

differential equation 

( ) 2 ( ) ( ) 1, (0,1),

( ) 1, 0,

(1) 0.

y x y x y x x

y x x

y

ε δ
δ

′′ − − − = ∈
 = − ≤ ≤
 =

, 

The maximum absolute errors are presented in Tables 1 

and 3 for different values of parameters and numerical 

computation in graphs as Figures 1 and 2. 

Example 2: Consider the differential equation 

( ) 0.25 ( ) ( ) 1, (0,1),

( ) 1, 0,

(1) 0.

y x y x y x x

y x x

y

ε δ
δ

′′ + − − = ∈
 = − ≤ ≤
 =

 

Table 3. Comparison of maximum absolute error obtained for Example 1 and 2 at different values of δ  with 0.1=ε and the number of intervals 100N = . 

 Example 1   Example 2  

↓ε  Our Method Results [18] Results [4] Our Method Results [18] Results [4] 

0.03 5.3152e-14 8.2805e-09 5.7000e-05 1.9429e-14 1.1784e-09 3.3000e-05 

0.05 5.8620e-14 7.7093e-09 3.9000e-05 2.4869e-14 1.1796e-09 2.5000e-05 

0.09 7.9575e-14 6.0459e-09 7.1000e-03 1.9429e-14 1.1790e-09 6.0000e-06 

 
Figure 1. The behavior of the numerical solution of Example 1 on the left side and for Example 2 in the right adjacent with 0.01=ε  and N = 100. 

 

Figure 2. Effects of perturbation parameter on the numerical solution by log-log plot for Example 1 on the left side and Example 2 in the right adjacent when

0.5=δ ε  and { }4 5 6 7 8, , , ,2 2 2 2 2h − − − − −= . 

Comparisons of maximum absolute errors are presented in Tables 2 and 3 with numerical computation in graphs as Figures 1 

and 2. 
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Example 3: Consider the differential equation 

( ) 0.25 ( ) ( ) 1, (0,1),

( ) 1, 0,

(1) 0.

y x y x y x x

y x x

y

ε δ
δ

′′ + − + = ∈
 = − ≤ ≤
 =

 

The maximum absolute errors are presented in Tables 4 and 7 with the corresponding rate of convergence given in Table 6 

and graphical representation in Figures 3 and 4. 

Example 4: Consider the delay differential equation 

( ) ( ) 2 ( ) 1, (0,1),

( ) 1, 0,

(1) 0.

y x y x y x x

y x x

y

ε δ
δ

′′ + − + = ∈
 = − ≤ ≤
 =

 

The maximum absolute errors are presented in Tables 5 and 7 with the corresponding rate of convergence given in Table 6 

and graphical representation in Figures 3 and 4. 

Table 4. Maximum absolute error obtained for Example 3 when 0.01=ε . 

↓ →Nδ  16 32 64 128 256 

After extrapolation     

0.003 5.1520e-06 6.7087e-08 9.9836e-10 1.5368e-11 2.0384e-13 

0.005 5.1375e-06 6.6873e-08 9.9494e-10 1.5471e-11 2.5174e-13 

0.009 5.0936e-06 6.6274e-08 9.8600e-10 1.5221e-11 2.8461e-13 

Before extrapolation     

0.003 4.0531e-03 2.4849e-04 1.5468e-05 9.6579e-07 6.0354e-08 

0.005 4.0411e-03 2.4775e-04 1.5422e-05 9.6292e-07 6.0168e-08 

0.009 4.0095e-03 2.4582e-04 1.5302e-05 9.5543e-07 5.9700e-08 

Table 5. Maximum absolute error obtained for Example 4 when 0.01=ε . 

↓ →Nδ  16 32 64 128 256 

After extrapolation     

0.003 1.2065e-04 1.2945e-06 1.8012e-08 2.7472e-10 4.2626e-12 

0.005 1.1798e-04 1.2843e-06 1.7935e-08 2.7429e-10 4.2066e-12 

0.009 1.2436e-04 1.2530e-06 1.7722e-08 2.7178e-10 4.2570e-12 

Before extrapolation     

0.003 2.8956e-02 1.8301e-03 1.1350e-04 7.1362e-06 4.4576e-07 

0.005 2.8841e-02 1.8350e-03 1.1350e-04 7.1458e-06 4.4635e-07 

0.009 2.8479e-02 1.8380e-03 1.1370e-04 7.1381e-06 4.4588e-07 

Table 6. Rate of convergence for Example 3 and Example 4, when 0.01=ε . 

 ↓ →Nδ  16 32 64 128 

 After extrapolation    

Example 3 0.003 6.2630 6.0703 6.0216 6.2363 

 0.005 6.2635 6.0707 6.0070 5.9415 

 0.009 6.2641 6.0707 6.0175 5.7409 

 Before extrapolation    

 0.003 4.0278 4.0058 4.0014 4.0002 

 0.005 4.0278 4.0058 4.0014 4.0003 

 0.009 4.0277 4.0058 4.0014 4.0003 

 After extrapolation    

Example 4 0.003 6.5423 6.1673 6.0349 6.0101 

 0.005 6.5214 6.1621 6.0309 6.0269 

 0.009 6.6330 6.1437 6.0270 5.9965 

 Before extrapolation    

 0.003 3.9839 4.0112 3.9914 4.0008 

 0.005 3.9743 4.0150 3.9895 4.0008 

 0.009 3.9537 4.0148 3.9935 4.0008 
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Table 7. Comparison of maximum absolute error obtained for Example 3 and 4, when 0.1=ε and the number of intervals 100=N . 

 Example 3   Example 4  

δ ↓  Our Method Results [18] Results [4] Our Method Results [18] Results [4] 

0.03 7.7183e-13 4.0323e-08 1.1800e-03 1.5027e-10 1.5160e-07 8.8000e-004 

0.05 2.9976e-13 3.9610e-08 1.0400e-03 1.5027e-10 1.5697e-07 7.6000e-004 

0.09 1.3767e-13 3.8377e-08 1.0300e-03 1.5027e-10 1.7120e-07 8.3000e-004 

 
Figure 3. The behavior of the numerical solution of Example 3 on the left side and for Example 4 in the right adjacent when 0.001=ε  and N = 100. 

 

Figure 4. Effects of using before and after the Richardson extrapolation on the numerical solution of Example 3 on the left side and for Example 4 on the right 

adjacent with 0.01=ε  and { }16,32,64,128, 256=N . 

7. Discussion and Conclusion 

Numerical solution of the second-order singularly 

perturbed delay reaction-diffusion equations that exhibits 

boundary layer or oscillatory behavior via higher-order 

numerical method have been presented. To achieve the 

higher-order method, the fourth-order finite difference 

method is accelerated to the sixth-order one using the 

Richardson extrapolation technique. The efficiency of the 

method is validated by numerical examples and results for 

different parameters. The obtained numerical results have 

been compared with the results obtained by the methods in 

“Solution of second-order singular perturbed delay 

differential equation using Trigonometric B-Spline” and 

“Exponentially Fitted Numerical Method for Singularly 

Perturbed Differential-Difference Equations”, [4, 18], (See 

Tables 1, 2, 3, 7). Numerical confirmation to the contribution 

of applying the Richardson extrapolation technique is 

presented in Tables 4, 5, 6. Besides, the obtained maximum 

absolute errors decrease rapidly as the number of mesh points 

N increases which indicates the convergence of the 

formulated method. Also, the consistency and stability of the 

method were investigated to guarantee convergence analysis. 

Furthermore, Figures 1, 2, 3 demonstrate the effects of the 

parameters on the numerical solutions. Figure 4, to verify 

that the consequence before and after applying Richardson 

extrapolation and effect of decreasing number of mesh sizes 

of the domain on the numerical solution in case of different 

delay parameters and the number of mesh points. 

Accordingly, after applying Richardson extrapolation 

accuracy of the solution improved with an accelerated rate of 

convergence, and as the number of mesh point’s N increases, 

the accuracy of the numerical solution increases. 
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Overall, a higher-order numerical method for solving the 

singularly perturbed delay differential equation is presented. 

This method is stable, consistent, and produces a more accurate 

solution than some existing methods for the differential equation 

under consideration [4, 18]. The interested researcher will be 

formulating the eighth or higher-order convergent numerical 

methods to obtain a more accurate solution.  
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