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Abstract: Wavelet transform is an important quadratic representation in time-frequency domain of signals. The main
advantage of wavelet transform is the time frequency localization as compared with the fourier transform. Due to the reason of
dilation and translation operation acting the basic time-frequency atoms. Therefore a multi-resoloution analysis strategy is
devoted to the construction of wavelet basis of L2(R), which also establishes a bridge between engineer and mathematics. The
construction of wavelets is equivalent to the design of filter banks with complete reconstruction. In this note we investigate filter
banks from the Fibonacci sequence. The draw back is that, the convergence z-transform is less than 1, hence it can not be used
as filter.By adopting the Hadamard product of the Fibonacci sequence and a geometric sequence, a type of Fibonacci-based
bi-orthogonal filter banks are constructed. This kind of filter banks are based two bricks: Bezout polynomials and the mask of
the cardinal B-splines. These filters are essentially rational functions, which have potential applications in system identification
and signal processing.
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1. Introduction
The Fibonacci sequence is defined by the rule that every

number after the first two is the sum of the two preceding ones:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 . . . , (1)

which holds the recurrence relation

Fn+2 = Fn + Fn+1

with initial values F0 = F1 = 1.
The Fibonacci sequence appears often unexpectedly in

mathematics so that there is an entire journal dedicated
to its study, the Fibonacci Quarterly. Applications of the
Fibonacci sequence includes computer algorithms such as
search technique and data systems [11-13] . It also appears
in biological setting[14, 15].

In this note, we will establish a relationship between the
Fibonacci sequence and filter banks. Multiplication by zn and

summation over n on the both sides of (1), it gives rise to the
z-transform of the Fibonacci sequence

F (z) =

∞∑
n=0

Fnz
n =

1

1− z − z2
, z ∈ C.

Note that the convergence radius of above series is
√
5−1
2

and then the series
∑
k

Fk is not convergent. This fact indicates

that the Fibonacci sequence is not a low-pass filter. Here a
sequence {ck : k ∈ Z} is called a low-pass filter if its z-
transform c(z) satisfies the requirement c(1) = 1. In order to
design a kind of low-pass filter from the Fibonacci sequence,
we consider the Hadamard product of the Fibonacci sequence
and the geometric sequence (λn : n = 0, 1, 2, . . .), that is, a
new sequence

(1, λ, 2λ2, 3λ3, 5λ4, 8λ5, 13λ6, 21λ7, 34λ8, · · · ).
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A normalization offers the following sequence

(1− λ− λ2)(1, λ, 2λ2, 3λ3, 5λ4, 8λ5, 13λ6, 21λ7, 34λ8, · · · ).
The general term of the above sequence is

an = (1− λ− λ2)λnFn =
λ2 + λ− 1√

5

(1−
√
5

2

)n+1

λn −

(
1 +
√
5

2

)n+1

λn

 ,

It satisfies the recursive formula an+2 = λ2an+λan+1 and holds
∑
n

an = 1. The z-transform of {an} is the rational function

h0(z) =
λ2 + λ− 1

λ2z2 + λz − 1
, z ∈ {z ∈ C : |z| <

√
5− 1

2λ
}. (2)

With the restriction 0 < λ <
√
5−1
2 , it gives h0(1) = 1.

For any fixed positive integerN , we will investigate the low-
pass filter

H0(z) =

(
1 + z

2

)N
h0(z). (3)

We remark that the factor
(
1+z
2

)N
controls the regularity of

scaling functions, which will be explained in the next section.
An equivalent form of the filter H0 is its boundary value on

the unit disc, that is, the 2π-periodic function

m0(ξ) = H0(z)|z=e−iξ`N (ξ) =

(
1 + e−iξ

2

)N
λ2 + λ− 1

λ2e−2iξ + λe−iξ − 1
`N (ξ), ξ ∈ R, (4)

Which holds m0(0) = 1. The low-pass property of H0 or
m0 (i.e. H0(1) = 1 or m0(0) = 1) suggests us to investigate
the intrinsic structure of the corresponding filter banks with
perfect reconstruction and the wavelet functions.

The first filter banks with two channels were introduced
by Croisier, Esteban, and Galand [2] in 1976 when they
compressed speech signal by subband coding schemes,
which decomposes a discrete signal into two signals of half
its size by using a filtering and subsampling procedure.
These research showed that the signal can be recovered
from these subsampled signals by canceling the aliasing
terms with a particular class of filters called conjugate
mirror filters (CMF). This breakthrough motivated an active

research effort to build a complete filter bank theory.
Necessary and sufficient conditions for decomposing a signal
in subsampled components with a filtering scheme, and
recovering the same signal with an inverse transform, were
established by Smith and Barnwell [9]. Daubechies [3]
designed univariate two-channel perfect reconstruction filter
banks having finite impulse response (FIR) corresponding to
univariate orthonormal wavelet having compact support and
vanishing moments. According to the theory of subband
filtering and multiresolution analysis[7], in the two channel
case, a filter bank is the vector (m0,m1, m̃0, m̃1) with
entries being 2π-periodic functions, which satisfies the matrix
equation(

m0(ξ) m0(ξ + π)
m1(ξ) m1(ξ + π)

)(
m̃0(ξ) m̃0(ξ + π)
m̃1(ξ) m̃1(ξ + π)

)∗
= I2×2, a.e. ξ ∈ [−π, π]. (5)

In this case, we also say that (m0,m1, m̃0, m̃1) forms
perfect reconstruction filter banks. The functions m0,m1

are called decomposition filters and correspondingly the dual
m̃0, m̃1 are addressed synthesis filters. In subband filtering,

one emphasizes the frequency decomposition of signals, that
is, m0 is a low-pass filter with m0(0) = 1 and m1 is a high-
pass filter with m1(π) = 0.

The equation (5) is equivalent to find H̃0, H1, H̃1 such that(
H0(z) H0(−z)
H1(z) H1(−z)

)(
H̃0(z) H̃0(−z)
H̃1(z) H̃1(−z)

)∗
= I2×2, z ∈ ∂D. (6)

Here, D is the unit disc {z : |z| < 1} and ∂D is its boundary.
Under suitable conditions on m0, one can define refinable functions and wavelets in L2(R) through the inverse Fourier

transform by the approach of infinite product

φ̂(ξ) :=
1√
2π

∞∏
k=1

m0(ξ/2
k),

ˆ̃
φ(ξ) :=

1√
2π

∞∏
k=1

m̃0(ξ/2
k), a.e. ξ ∈ R, (7)

and

ψ̂(ξ) := m1(ξ/2)φ̂(ξ/2),
ˆ̃
ψ(ξ) := m̃1(ξ/2)

ˆ̃
φ(ξ/2), a.e. ξ ∈ R.
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Throughout this paper, the Fourier transform ĝ = Fg of
g ∈ L1(R) is defined at ξ ∈ R by the equation

(Fg)(ξ) := 1√
2π

∫
R
g(t)e−iξtdt. (8)

The Plancherel theorem allows us to extend the definition of
the Fourier transform to any function in L2(R) by the density
arguments. The Fourier transform has an extension for even
tempered distribution.

We call φ and φ̃ scaling functions, and ψ and ψ̃ wavelets,
respectively. Note that the scaling function φ defined by the

infinite product
∞∏
k=1

m0(ξ/2
k) holds the identity

φ̂(ξ) = m0(ξ/2)φ̂(ξ/2), a.e. ξ ∈ R.

A inverse Fourier transform gives rise to the refinement
equation

φ(t) =
∑
k∈Z

akφ(2t− k), t ∈ R,

where {ak : k = 0, 1, 2, · · · } is the sequence of the
coefficients of the low-pass filter m0 defined in (4).

We need to revisit Bezout polynomials and cardinal B-
splines because they are crucial for the design of our
IIR (infinite impulse response) filter banks with perfect
reconstruction.

2. Review of Bezout Polynomials and
B-splines

The Bezout polynomial and the symbol of cardinal B-
spline are basic bricks for the design of our filter banks. The
Bezout polynomial plays a crucial role in the construction of
Daubechies wavelets, which is defined by

PN (x) =

N−1∑
k=0

(
N + k − 1

k

)
xk, x ∈ R. (9)

The Bezout polynomial is the unique lowest degree solution
of the equation

(1− x)NP (x) + xNP (1− x) = 1, x ∈ R. (10)

Essentially, PN is the first @terms truncation of the Taylor
expansion of (1− x)−N .

We need a lemma by Riesz, which indicates that one
can extract the square root from a positive trigonometric
polynomial.

Lemma 2.1 Let A be a positive trigonometric polynomial
invariant under the substitution ξ → −ξ. A is necessarily of
the form

A(ξ) =

N∑
k=0

ak cos kξ, with ak ∈ R.

Then there exists a trigonometric polynomial B of order N ,
i.e.,

B(ξ) =

N∑
k=0

bke
ikξ, with bk ∈ R,

such that |B(ξ)|2 = A(ξ).
According to the above lemma, we can define a

trigonometric polynomial `N from the square root of PN (x)
with x = (1− cos ξ)/2, that is,

|`N (ξ)|2 := PN (sin2
ξ

2
), ξ ∈ [−π, π]. (11)

Finally, we turn to introduce the symbol of B-spline. This
topic has a long story associated with Strang-Fix conditions,
approximation of shift invariant subspace, vanishing moments
of wavelets, accuracy and construction of Daubechies
wavelets. The function φ ∈ L2(R) satisfies the Strang-Fix
condition of order N if the Fourier transform of φ admits the
equations

dj

dξj
φ̂(2kπ) = δk,0δj,0

for 0 ≤ j ≤ N − 1 and k ∈ Z. Particularly, if φ is refinable
with symbol mφ, then a characterization for the Strang-Fix
condition of φ can be offered in terms of the symbol mφ, that
is,

dj

dξj
mφ(π) = 0, 0 ≤ j ≤ N − 1.

In this case, mφ has the following factorization

mφ(ξ) =

(
1 + e−iξ

2

)N
`φ(ξ), ξ ∈ [−π, π],

where `φ is a 2π-periodic function. The factor
(

1+e−iξ

2

)N
is

considered as regularity factor since one can measure the index
of regularity (smoothness) of φ according to N . Moreover, if
we define the function βN through

β̂N (ξ) :=

∞∏
k=1

(
1 + ei2

−kξ

2

)N
, ξ ∈ R,

one can show that βN is just the cardinal B-spline of order N ,
the N -fold convolution of the indicator function χ(0,1) of the
interval (0, 1), i.e.,

βN = χ(0,1) ∗ · · · ∗ χ(0,1)︸ ︷︷ ︸
N

.

It indicates that the factor
(

1+e−iξ

2

)N
is the symbol of the

cardinal B-spline βN of order N .

3. Fibonacci-sequence-based Filter
Banks

Note that the low-pass filter m0 defined in (4) does not
satisfies the necessary condition of orthogonality |m0(ξ)|2 +
|m0(ξ + π)|2 = 1, a.e. ξ ∈ [−π, π]. We define the
corresponding dual low-pass filter m̃0 by
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m̃0(ξ) :=

(
1 + e−iξ

2

)N
λ2e2iξ + λeiξ − 1

λ2 + λ− 1
`N (ξ), ξ ∈ [−π, π]. (12)

Obviously, m̃0 is also a low-pass filter. Moreover, it can be verified that m̃0 is the dual of m0. In fact, direct calculation gives
rise to

m0(ξ)m̃0(ξ) +m0(ξ + π)m̃0(ξ + π)

=

∣∣∣∣1 + eiξ

2

∣∣∣∣2N |`N (ξ)|2 +
∣∣∣∣1− eiξ2

∣∣∣∣2N |`N (ξ + π)|2

=

(
cos2

ξ

2

)N
PN (sin2

ξ

2
) +

(
sin2

ξ

2

)N
PN (cos2

ξ

2
)

= (1− y)NPN (y) + yNPN (1− y),

where y = 1−cos ξ
2 . Recalling that the Bezout polynomial PN is the solution of the equation (10), it follows that

m0(ξ)m̃0(ξ) +m0(ξ + π)m̃0(ξ + π) = 1, a.e. ξ ∈ [−π, π].

As for two high-pass filters m1 and m̃1 corresponding to m0 and m̃0, respectively, we define m1 and m̃1 by

m1(ξ) := eiξ
(
1− eiξ

2

)N
λ2 + λ− 1

λ2e−2iξ + λe−iξ − 1
`N (ξ + π), ξ ∈ [−π, π] (13)

and

m̃1(ξ) := eiξ
(
1− eiξ

2

)N
λ2e2iξ + λeiξ − 1

λ2 + λ− 1
`N (ξ + π), ξ ∈ [−π, π]. (14)

The following theorem claims that {m0,m1, m̃0, m̃1} form perfect reconstruction filter banks. Theorem 3.1 Supposed that the
2π-periodic functions m0,m1, m̃0, m̃1 are defined by (4), (13), (12), (14). Then {m0,m1, m̃0, m̃1} are perfect reconstruction
filter banks.
proof: To verify (5), it suffices to check the following equations

m0(ξ)m̃1(ξ) +m0(ξ + π)m̃1(ξ + π) = 0, a.e. ξ ∈ [−π, π], (15)

m1(ξ)m̃0(ξ) +m1(ξ + π)m̃0(ξ + π) = 0, a.e. ξ ∈ [−π, π], (16)

and

m1(ξ)m̃1(ξ) +m1(ξ + π)m̃1(ξ + π) = 1, a.e. ξ ∈ [−π, π]. (17)

For the convenience of readers, the calculation details are as follows. To obtain the equation (15), recalling the definition of
m0 and m̃0, we get

m0(ξ)m̃1(ξ) +m0(ξ + π)m̃1(ξ + π)

=

(
1 + e−iξ

2

)N
λ2 + λ− 1

λ2e−2iξ + λe−iξ − 1
e−iξ

(
1− e−iξ

2

)N
λ2e−2iξ + λe−iξ − 1

λ2 + λ− 1
`N (ξ)`N (ξ + π)

+

(
1− e−iξ

2

)N
λ2 + λ− 1

λ2e−i2ξ − λe−iξ − 1
(−e−iξ)

(
1 + e−iξ

2

)N
λ2e−2iξ − λe−iξ − 1

λ2 + λ− 1
`N (ξ + π)`N (ξ + 2π)

= 0.
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Similarly, the equation (16) can be obtained from the following calculation

m1(ξ)m̃0(ξ) +m1(ξ + π)m̃0(ξ + π)

= eiξ
(
1− eiξ

2

)N
λ2 + λ− 1

λ2e−2iξ + λe−iξ − 1
`N (ξ + π)

λ2e−2iξ + λe−iξ − 1

λ2 + λ− 1

(
1 + eiξ

2

)N
`N (ξ)

−eiξ
(
1 + eiξ

2

)N
λ2 + λ− 1

λ2e−2iξ − λe−iξ − 1
`N (ξ + 2π)

λ2e−2iξ − λe−iξ − 1

λ2 + λ− 1

(
1− eiξ

2

)N
`N (ξ + π)

= eiξ
(
1− e−2iξ

4

)N
`N (ξ + π)`N (ξ)− eiξ

(
1− e−2iξ

4

)N
`N (ξ + 2π)`N (ξ + π)

= 0.

To obtain the equation (17), we get

m1(ξ)m̃1(ξ) +m1(ξ + π)m̃1(ξ + π)

= eiξ
(
1− eiξ

2

)N
λ2 + λ− 1

λ2e−2iξ + λe−iξ − 1
`N (ξ + π)e−iξ

(
1− e−iξ

2

)N
λ2e−2iξ + λe−iξ − 1

λ2 + λ− 1
`N (ξ + π)

−eiξ
(
1 + eiξ

2

)N
λ2 + λ− 1

λ2e−2iξ − λe−iξ − 1
`N (ξ + 2π)(−eiξ)

(
1 + e−iξ

2

)N
λ2e−2iξ − λe−iξ − 1

λ2 + λ− 1
`N (ξ + 2π)

=

(
1− e−iξ

2

)N
PN (cos2

ξ

2
)

(
1− eiξ

2

)N
+

(
1 + e−iξ

2

)N
PN (sin2

ξ

2
)

(
1 + eiξ

2

)N
.

Using the variable change x = (1− cos ξ)/2, it follows

m1(ξ)m̃1(ξ) +m1(ξ + π)m̃1(ξ + π)

=

∣∣∣∣1− eiξ2

∣∣∣∣2N `N (ξ + π)`N (ξ + π) +

∣∣∣∣1 + eiξ

2

∣∣∣∣2N `N (ξ + 2π)`N (ξ + 2π)

=

∣∣∣∣1− eiξ2

∣∣∣∣2N PN (cos2
ξ

2
) +

∣∣∣∣1 + eiξ

2

∣∣∣∣2N PN (sin2
ξ

2
)

=

∣∣∣∣1− eiξ2

∣∣∣∣2N PN (1− x) +
∣∣∣∣1 + eiξ

2

∣∣∣∣2N PN (x)

= xNPN (1− x) + (1− x)NPN (x) = 1.

This proof of this theorem is completed.

4. Discussion and Conclusion
The properties of the scaling function φ and its dual scaling

function φ̃ are completely determined by the filters m0 and
m̃0 since they are defined respectively in frequency domain
by an infinite product (7). We need to explain the well defined

function φ̂ and ˆ̃
φ, which is equivalent to check the convergence

of the infinite product (7).
The proof is routine from Daubechies. We simultaneously

deal with this and write m0 and m̃0 as m =
∑
n

hne
in·.

According to the definition of m0 and m̃0 in (4) and (12),
both of them are in C([−π, π]). The Fourier coefficients hn
decay exponentially and holds

∑
n

|n|σ|hn| < +∞ for any

positive number σ. Using the property m(0) = 1, it gives

|m(ξ)| ≤ 1 + |m(ξ)− 1| ≤ 1 + |
∑
n

hn(1− einξ)|

≤ 1 +
∑
n

|hn|2| sin
nξ

2
| ≤ 1 + |ξ|

∑
n

|hn||n|

≤ ec|ξ|

with c =
∑
n

|hn||n|. Then

∞∏
k=1

|m(2−kξ)| ≤ exp (

∞∑
k=1

c2−k|ξ|) = ec|ξ|.
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Therefore, the infinite products
∞∏
k=1

m0(2
−kξ) and

∞∏
k=1

m̃0(2
−kξ) converge absolutely and uniformly on compact

sets of R. The functions φ̂ and ˆ̃
φ are in C(R).

In this note, we adopt the Hadamard product of the
Fibonacci sequence and a geometric sequence to construct
a type of Fibonacci-based bi-orthogonal filter banks. These
filters are essentially rational functions, which have potential
applications in system identification in frequency domain and
signal processing.
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