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Abstract: Most physical phenomena are modeled as continuous or discrete dynamic systems of a second dimension or more, 

but because of the multiplicity of bifurcation parameters and the large dimension, researchers have big problems for the study 

of this type of systems. For this reason, this article proposes a new method that facilitates the qualitative study of continuous 

dynamic systems of three dimensions in general and chaotic systems in particular, which contains many parameters of 

bifurcations. This method is based on projection on the plane and on an appropriate bifurcation parameter. 
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1 Introduction 

The theory of chaos is one of the few, one of the very few 

mathematical theories that has had any real media success. It has 

even become a fashionable theory that it is fashionable to be 

able to cite if one wants to pass for someone cultured. We will 

even see that some of the great minds of this century quoted him 

without obviously knowing what they were talking about. 

Appeared in the early sixties in meteorology, it quickly spread to 

just about every science. Some have seen, or still see, a scientific 

revolution of equal importance to the appearance of Newton's 

mechanics, Einstein's relativity, or quantum mechanics. 

The purpose of this article is to provide a new method for 

studying continuous three-dimensional dynamic systems with 

several bifurcation parameters [1]. This method gives 

important results on dynamic behavior, stability, bifurcations 

and chaos. This method has two steps, a projection on the 

plane to obtain a dynamic system of a smaller dimension, 

then the choice of the appropriate parameter. For simplicity, 

we consider a three-dimensional chaotic dynamic model with 

seven bifurcation parameters [2]. 

In this paper, a subsystem of the original system will be 

studied via an analysis of its dynamic behavior using a lower 

dimension (2D). This will be useful in the final study of the 

dynamic behavior of the original system. 

2. Dynamic Analysis of a Nonlinear 

System in Three Dimensions 

Consider the dynamic system defined by: 

1
1 1 2 2 3 3

2
1 3

3
1 1 2 2 3

                 

dx
a x a x a x

dt
dx

x x b
dt

dx
c x c x x c

dt

 = + +
 = +

 = + +


                       (1) 

Where, 0,(1 3), 0,(1 2), 0i ia i c i b≠ ≤ ≤ ≠ ≤ ≤ ≠ and 0c ≠  

are real parameters. 

By the projection on the plane, 1 2( )x x− the following new 

system is obtained: 

1
1 1 2 2 3 3

2
1 3

   

                                         

dx
a x a x a x

dt

dx
x x b

dt

 = + +


 = +

                         (2) 

Where, 3x  is considered as a known function of the time 

variable t . When 0t t= the system (2) becam linear and two-
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dimensional with constant coefficient. 

The Jacobian matrix of system (2) is:  

1 2

3 0

a a
J

x

 
=  
 

 

And, their determinant is given by:  

det( )
2 3

J a x= −  

For 3 0x ≠ , we have det( ) 0J ≠  det(J)≠0. 

2.1. The Fixed Point of the System (2) 

The fixed point of the system (2) obtained from:  

1 2 0
dx dx

dt dt
= =  

Hence  

1 1 2 2 3 3

1 3

0   

0

a x a x a x

x x b

+ + =
 + =

                  (3) 

With a simple calculation, the following is found 

2
1 3 3

1 2
3 2 3

  and  e e a b a xb
x x

x a x

−
= − =  

Thus the system (2) has a single fixed point, 
2

1 3 3

3 2 3

 , 
a b a xb

x a x
e
 −

−  
 

 

Using the translation: 

1 1

2 2

e

e

x x x

y x x

 = −


= −
 

The pointe can be reduced to the to the origin O .  

2.2. Fixed Point Classification According to Eigenvalues 

From the matrix J , we obtain: 

2
1 2 3det( )I J a a xλ λ λ− = − −  

We put  

det( ) 0I Jλ − =  

Hence  

1 2 3² 0 a a xλ λ− − =                           (4) 

Assuming that, 2 0a >  

1 For x₃>0, the equation (4) has two solutions 1λ  and 2λ  

such that, 1 20λ λ< < then the fixed point e is a 

"saddle" point. The curve of the solution in the plane 

( )1 2x x− is represented in (Figure 1.a), where the 

directions of the orbits are represented by arrows when 

the time t increases, when t tends to infinity only two 

orbits move towards the fixed point e , and the others 

diverge to infinity following two different directions. 

2 For 1 0a < , when 
2
1

3
24

a
x

a
< − : The equation (4) has 

two solutions 1λ  and 2λ  such that, 1 2 0λ λ< < , so, the 

fixed point e is a "Node", which explains the tendency 

of solution curves on the plane ( )1 2x x−  to infinity 

with the exception of two orbits that tend towards point 

e . This is shown in (Figure 1.b), where the direction of 

the orbits is represented by arrows. 

3 For 1 0a < , when 
2
1

3
2

0
4

a
x

a
− < < : The equation (4) has 

two complex solutions conjugated with a negative real 

part, the fixed point e  is a "focus". The curve of the 

solutions on the plane ( )1 2x x−  is shown in (Figure 

1.c), where the direction of the arrow is the direction of 

the orbit when the time t  increases. When t  tends to 

infinity, all the orbits move in spiral around to point e . 

 

Figure 1. (a) the fixed point e  is a saddle point, (b) The fixed point e  is a 

"node", (c) the fixed point e  is a "focus". 

2.3. The Relationship Between the Time Variable t and the 

Function 3( )x t  

When t  tends to infinity, The orbit 3( )x t intersects the two 

straight lines 
2
1

3
24

a
x

a
= − and 3 0x = alternately and several 

times. Hence, the division of the 3x  axis into three disjoint 

domains 
2
1

2

,
4

a

a

 
−∞ −  
 

, 2
1

2

,0
4

a

a

 
−  
 

and ( )0, +∞  Which implies the 

possession of the system (2) of different dynamic behaviors 

in the three domains above. When tends to infinity the 

system (2) changes its dynamic behavior and 3( )x t passes 

through these domains repeatedly, leading to complex 

dynamics such as the appearance of bifurcations and chaos. It 

is noticed that the system (2) depends on time t  when 3( )x t

varies over time. The two systems (1) and (2) can be verified 

that are chaotic when the function 3( )x t passes through the 

straight lines 
2
1

3
24

a
x

a
= − and 3 0x = alternately. 
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2.4. The Fixed Point of the System (1) 

Let us now look for the fixed point of the system (1), it 

results from the first and the second equation, 

3
1

   
b

x
x

= −                                    (5) 

And  

2
3 1 1

2
2 1

a b a x
x

a x

−=                                 (6) 

By substituting (5) and (6) into the third system equation 

(1), this equation is obtained, 

3 2
2 1 1 1 2 2 1 3 2( ) 0a c x a bc a c x a c b+ + − =                       (7) 

To obtain a single fixed point, should be taken the case, 

1 2
1 2 2

2

0 or  
a c

a bc a c c b
a

+ = = −                (8) 

Then, under the condition (8), the equation (7) has a 

unique real root, 

3 2
31

2 1

a c
x b

a c
=  

therefore the fixed point of system (1) is given by  

2
3 2 3 1 1

3

2 1 2 1 1

, ,
a c a b a x b

E b
a c a x x

 −
−  

 

  

2.5. Linearization of the System (2) at Fixed Point 

( )1 2 3, ,E x x x  

The stability of the equilibrium state (point E ), is 

analyzed by linearizing the system (1) to point E  under the 

linear transformation, 

1 0

2 0

3 0

x x x

y x y

z x z

= −
 = −
 = −

 

Where 

                                 (9) 

The system (1) becomes in the form: 

1 2 3

0 0

1 2 0 2 0 2

      

dx
a x a y a z

dt

dy
z x x z xz

dt

dz
c x c z y c y z c yz

dt

 = + +

 = + +

 = + + +


      (10) 

The Jacobian matrix ( )A E of the system (10) is 

1 2 3

0 0

1 2 0 2 0

( ) 0  

a a a

A E z x

c c z c y

 
 =  
 
 

                (11) 

Its characteristic polynomial is given by 

3 2( )  P A B Cλ λ λ λ= + + +              (12) 

Where  

2 0 1

2 3 1 1 2 0 2 0

2 1 0

( )

B bc a c a c y a z

A c y a

C a c x

= − +
 = − + −
 =

         (13) 

Then, the conditions of Routh-Hurwitz lead to the 

condition that the real parts of the roots are λ -négative iff 

0A > , 0C > and 0AB C− > . It is noticed that the 

coefficients of the polynomial (12) are all positive. So 

( ) 0P λ > for all 0λ > . Therefore, the only fixed point is 

unstable ( ( ) 0rel λ > ), If ( ) 0P λ > has two conjugate 

complex eigenvalues. It is noticed that, 1 iλ ω= and 

2 iλ ω= −  

Since the sum of the three roots of the cubic P(λ) is 

1 2 3   Aλ λ λ+ + = −                          (14) 

So, we have 3 2 0 1A c y aλ = − = + which is located on the 

system stability margin (10). 

From equality (14), we have 

2
2 1 0 1 2 0 2 3

3
2 0

c a x a a x c a b

a x
λ − + +=               (15) 

Then, we have 

3( ) 0P AB Cλ = − + =                    (16) 

Where  
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2 2

2 3 1 2 0 1 3 2 0 1 2 3 2

2 3 2

3 2 2 2
1 2 3 1 2 2 1 0 1 3 2 0 3 2 2 2 2 3 1

2 3 2

2 1 0

( ) ( )
 

a a c c x a a bc x a a a c b
A

a a c b

a a a c c a c x a a bc x a bc a bc a a c
B

a a c b

C a c x

 + −=

 + − + − =

 =



                                           (17) 

And  

3 2
30

2 1

a c
x b

a c
=  

A substitution of (17) in (16) and with a complicated computation, it is obtained 

2 3 2 2 2 2 3 4 2 2 4 2
2 3 1 2 2 3 1 2 1 3 1 1 2 3 1 2 1 2 1 0

2 3 3 2 2 4 2 2 3 2 3 2
1 2 3 1 2 2 3 1 2 1 2 3 2 1 2 3 1 2 1 2 3 2 2 3 1 2 0

2 2 2 4 2 2 4 2 3 2 2 2 2 2
1 3 2 1 3 1 2 1 2 3 2 1 2 3 2 1 2 3

( )

( )

a a bc c a a c c a a bc a a a c c a a c x

a a a bc c a a bc c a a a b c a a a bc c a a a bc a a bc c x

a a b c a a b c c a a a bc a a a b c a a a

− − − − +

− − + − + +

− + + − + 1 2 0bc c =

                         (18) 

Or 

3 2
1 1 1 0 a a aα β γ δ+ + + =                                                                                   (19) 

Where 

4 2 2
3 1 0 2 3 2 0

2 2 2 2 4
2 3 1 2 0 3 2

4 2 2 3 2 4 2 2
2 1 0 2 3 1 2 2 3 2 2 3 1 2 0

2 2 4 2 3 2 2 2 2 2
3 1 2 2 3 2 2 3 2 2 3 1 2

2 3 2 2 2 2 2 3 2 3 2
2 3 1 2 2 3 1 2 0 2 3 1 2 2 3 1 2

( )

( ) ( )

a bc x a a bc x

a a c c x a b c

a c x a a bc c a a b c a a bc c x

a b c c a a bc a a b c a a bc c

a a bc c a a c c x a a bc c a a bc c x

α

β

γ

δ

= − +

= − −

= − + − + −

+ + − +

= − + − + 0

  











                                    (20) 

Assume that, 0α > and the equation (19) has a single solution 1 0a a= . Hence, for 1 0a a= the fixed point E  will lose its 

stability, so a hopf bifurcation can occur. Using the two conditions (14), (16) and 1 0a a= . The polynomial ( )P λ can be written 

in the form: 

2
0 2 0( ) ( )( ) P a c y Bλ λ λ= − − + ɶ                                                                  (21) 

Where 

3 2 2 2
0 2 3 1 2 2 1 0 0 3 2 0 3 2 2 2 2 3 1

2 3 2

( ) ( )a a a c c a c x a a bc x a bc a bc a a c
B

a a c b

+ − + −=ɶ                                        (22) 

It is obvious that, the equation ( ) 0P λ =  has three roots, one negative, 3 0 2 0a c yλ = +  and a pair of conjugated purely 

imaginary roots 

3 2 2 2
0 2 3 1 2 2 1 0 0 3 2 0 3 2 2 2 2 3 1

1,2
2 3 2

( ) ( )a a a c c a c x a a bc x a bc a bc a a c
i id

a a c b
λ + − + −= ± = ±                                  (23) 

Differentiate the two sides of the equation ( ) 0P λ =  for to 1a . 

We obtain 

2
22 0 1 2 0 2 1 0

2 2

2

2
1

   
3 2

c x a bc x a c x

a a bd

dt A B

λ λ
λ

λ λ

   −− +     
   =

+ +
                                                     (24) 
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Hence 

( )

( )
1 0

2
22 0 0 2 0 2 1 0

0 2 0
2 2

22
1 0 2 0

2
1

Re 1
0   

2
a a

c x a bc x a c x
d a c y

a a bd

da d a c y

λ

=

   −− + +     
   = − <

+ +
                              (25) 

And 

( )

( )
1 0

2
2 0 0 2 0 2 1 0

0 2 0
2 2

22
1 0 2 0

2
1

Im 1
  

2
a a

c x a bc x a c x
a c y

a a bd
d

da d a c y

λ

=

   −− + +     
   = −

+ +
                                 (26) 

Conclusion. 1 

1 According to the Hopf bifurcation theorem, it can be 

concluded that 0a  is the critical value. 
2 The fixed point E  is stable, when 1 0a a< , and there 

are a periodic solutions when 1 0a a> . 

3 When 1a  crosses the value 0a , the system (1) 

undergoes a Hopf bifurcation at fixed point E . 

 

 

3. Property of Hopf Bifurcation 

In this section. The explicit formulas will be drawen to 

determine the orientation, stability and period of these 

periodic bifurcation solutions at point E for the critical value 

1 0a a= , using techniques of the normal form. 

3.1. Supercritical and Subcritical Bifurcation 

Let the eigenvectors corresponding to the eigenvalues 

3 0 2 0a c yλ = +  and 2 idλ = are 1v  and 2 3v iv+ . 

By direct calculations, the following is obtained 

2
2 1 0 0 2

2 2 2
1 0 2 0 0 2 2 2 0 0 3 2

2 2 2 2 2
2 1 0 2 0 3 2

2 2
0 2 0 2 3 2 0

2 2
0 2 0 3 0 2 3

2 2 2 2
2 2 0 3

2 2 2
2 2 1 2 0 0

2 2 2
2 0 2 0 0

1

( )

( )

1

( )

(( ) ) ( )

a c x a a b

v a c x a a a bc x a a bc

a c a bc x a b c

a a x a a bc x

a a x a d x a a b

v a x a d

c b bc d c c x y

bc d x c dx y

 
 
 
 − 
 − + + +
 
 
 + − 
 − 



− + −
+

− −
− +

2 2
3 2 0 3 1 0 3 1

2 2 2
3 2 3 2 3 1 0

2 2 2 2
1 2 1 0 2 0

2 2 2
2 0 2 0 0

0

( )

( )

(( ) ) ( )

d a b c a a c x a bc

v a a b c a c d x

c c b c d x c b y

bc d x c dx y















 
 
 
 
 
 
 
 
    


 
 
 
  + + 
 +
 
 
  − +   − +  

                                                                  (27) 

We put,  
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2
2 1 0 0 2 2 2 2 2

0 2 0 3 0 2 3 3 2 0 3 1 0 3 12 2 2
1 2 3 0 2 0 0 2 2 2 0 0 3 2 2 2 2 2 2 2 2

2 0 3 2 3 2 3 1 0

2 2 2 2 2 2 2 2
2 1 0 2 0 3 2 2 2 1 2

2 2
0 2 0 2 3 2 0

1
1 0

( )
( , , ) ( )

( ) ( )

a c x a a b
a a x a d x a a b d a b c a a c x a bc

P v v v a c x a a a bc x a a bc
a x a d a a b c a c d x

a c a bc x a b c c b bc d c c x

a a x a a bc x

−
− + − + += = − + + +

+ +

+ − − −
−

2 2 2 2
0 0 1 2 1 0 2 0

2 2 2 2 2 2
2 0 2 0 0 2 0 2 0 0

( )

(( ) ) ( ) (( ) ) ( )

y c c b c d x c b y

bc d x c dx y bc d x c dx y

 
 
 
 
 
 
 
 
 − + 
 − + − + 

  (28)

To facilitate the calculations, the matrix (28) is replaced by 

the following, 

1 2 3

1 2 3

1 1 0

   α α α
β β β

 
 
 
 
 

                     (29) 

Where 

2
2 1 0 0 2

1 2 2 2
0 2 0 0 2 2 2 0 0 3 2

2 2
0 2 0 3 0 2 3

2 2 2 2 2
2 0 3

2 2
3 2 0 3 1 0 3 1

3 2 2 2
2 3 2 3 1 0

( )

( )

a c x a a b

a c x a a a bc x a a bc

a a x a d x a a b

a x a d

d a b c a a c x a bc

a a b c a c d x

α

α

α

 −
=

− + + +
 − + − =

+
 + + =
 +

 

2 2 2 2 2
2 1 0 2 0 3 2

1 2 2
0 2 0 2 3 2 0

2 2 2
2 2 1 2 0 0

2 2 2 2
2 0 2 0 0

2 2 2 2
1 2 1 0 2 0

3 2 2 2
2 0 2 0 0

( )

( )

(( ) ) ( )

( )

(( ) ) ( )

a c a bc x a b c

a a x a a bc x

c b bc d c c x y

bc d x c dx y

c c b c d x c b y

bc d x c dx y

β

β

β

 + −
=

−
 − − =

− +
 − + =
 − +

       (30) 

Then, perform the following transformation on the system 

(10) 

1

2

3

ux

y P u

z u

  
   =   

   
   

 

Hence  

1

1
2

3

u x

u P y

zu

−
   
   =   

  
  

 

In order to obtain 

1 1 2 3

2 1 2 3

3 1 2 3

u m x m y m z

u n x n y n z

u k x k y k z

= + +
 = + +
 = + +

                      (31) 

Therefore  

1
2 1 2 3

2
1 1 2 3

3
3 1 2 3

( , , )

( , , )

( , , )

du
du F u u u

dt

du
du G u u u

dt

du
u H u u u

dt
λ

 = − +

 = +

 = +


                 (32) 

Where 

1 2 3 2 1 2 3 3 2 1 2 3

1 2 3 2 1 2 3 3 2 1 2 3

1 2 3 2 1 2 3 3 2 1 2 3

1 2 3 1 2 1 1 2 2 3 3

1 2 3 1 1 2 2 3 3 1 1 2 2

F(u ,u ,u )= m f(u ,u ,u )+m c g(u ,u ,u )

G(u ,u ,u )=  n f(u ,u ,u )+ n c g(u ,u ,u )

H(u ,u ,u )= k f(u ,u ,u )+ k c g(u ,u ,u )

f(u ,u ,u )= (u +u )( u + u + u )

g(u ,u ,u )= ( u + u + u )( u + u +

β β β
α α α β β β3 3u )










 

1 3 3 1
1

3 3 2 1

3
2

3 3 2 1

3
3

3 3 2 1

1
( )( )

( )( )

( )( )

m

m

m

α β α β
β α α α

β
β α α α

α
β α α α

  −
= +  − −  

 = − − −


= −
− −

 

3 1 1 3
1

3 2 1 3 2 1

3
2

3 2 1 3 2 1

3
3

3 2 1 3 2 1

( ) ( )

( ) ( )

( ) ( )

n

n

n

α β α β
β α α α β β

β
β α α α β β

α
β α α α β β

 −
= − − −

 = − − −


= −
− − −

 

1 2 2 1
1

3 2 1 3 2 1

1 2
2

3 2 1 3 2 1

2 1
3

3 2 1 3 2 1

( ) ( )

( ) ( )

( ) ( )

k

k

k

α β α β
β α α α β β

β β
β α α α β β

α α
β α α α β β

 −
= − − −

 − = − − −
 −

= −
− − −

 

Applying now, the method of Auchmuty and Nicolas 

(Hasard and al.1981, Zhang, 1991), from system (32), the 

following quantities can be calculated at 1 0a a= and 

(0,0,0)O . 
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2 2 2 2

11 2 2 2 2
1 2 1 2

1

4

F F G G
g i

u u u u

  ∂ ∂ ∂ ∂= + + +    ∂ ∂ ∂ ∂  
 

Hence 

( )( ) ( )( )11 2 1 2 2 3 2 1 1 3 2 2 2 2 1 2 2 3 2 1 1 3 2 2 2

1 1

2 2
g m m m c m c i n n n c n cβ β α β α β β β α β α β= + + + + + + +  

And 

2 2 2 2 2 2

02 2 2 2 2
1 2 1 21 2 1 2

1
2 2

4

F F G G G F
g i

u u u uu u u u

 ∂ ∂ ∂ ∂ ∂ ∂= − − + − +  ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ 
 

Hence  

( )

( )

02 2 1 2 3 2 1 1 2 2 2 1 2 3 2 2 1 1 2

2 1 2 3 2 1 1 2 2 2 1 2 3 2 2 1 1 2

1
( ( ) ( ) ( )

2

1
( ) ( ) ( ) ( )

2

g m m c n n c

i n n c m m c

β β α β α β β β α β α β

β β α β α β β β α β α β

= − + − − + − + +

− + − + + + +
 

On the other hand  

2 2 2 2 2 2

20 2 2 2 2
1 2 1 21 2 1 2

1
2 2

4

F F G G G F
g i

u u u uu u u u

  ∂ ∂ ∂ ∂ ∂ ∂
 = − + + − −   ∂ ∂ ∂ ∂∂ ∂ ∂ ∂  

 

Therefore 

( )

( )

20 2 1 2 3 2 1 1 2 2 2 1 2 3 2 2 1 1 2

2 1 2 3 2 1 1 2 2 2 1 2 3 2 2 1 1 2

1
( ( ) ( ) ( )

2

1
( ) ( ) ( ) ( )

2

g m m c m m c

i n n c m m c

β β α β α β β β α β α β

β β α β α β β β α β α β

= − + − − + + + +

− + − − + − +
 

And 

3 3 3 3 3 3 3 3

21 3 2 2 3 3 2 2 3
1 1 2 1 2 2 1 1 2 1 2 2

1

8

F F G G G G F F
G i

u u u u u u u u u u u u

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 = + + + + + − −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 

Therefore  

21 0G =  

In addition to 

2 2

11 2 2
1 2

1

4

H H
h

u u

 ∂ ∂= +  ∂ ∂ 
 

Hence 

( )11 2 1 2 3 2 1 1 2 2

1
( ) ( )

2
h k k cβ β α β α β= + + +  

And  

2 2 2

20 2 2
1 21 2

1
2

4

H H H
h i

u uu u

 ∂ ∂ ∂= − −  ∂ ∂∂ ∂ 
 

Therefore  

 

( ) ( )( )20 2 1 2 3 2 1 1 2 2 2 1 2 3 2 2 1 1 2

1
( ( ) ( ) ( )

2
h k k c i k k cβ β α β α β β β α β α β= − + − − + + +  

Then, the following system equations are obtained 
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1 11 11

1 20 20( 2 )

h

id h

λ ω
λ ω

= −
 − = −

                       (33) 

The solution of the system (33) is 

11
11

1

20
20

1( 2 )

h

h

id

ω
λ

ω
λ

 = −


 = −
 −

 

Hence  

( )

( )

( ) ( )

2 1 2 3 2 1 1 2 2
11

1

2 1 1 2 3 2 1 1 2 2 2 1 2 3 2 2 1 1 2
20 2 2

1

2 1 2 3 2 1 1 2 2 1 2 1 2 3 2 2 1 1 2

2 2
1

( ) ( )

2

( ) ( ) 2 ( ) ( )

2( 4 )

2 ( ) ( ) ( ) ( )

2( 4 )

k k c

k k c d k k c

d

d k k c k k c
i

d

β β α β α β
ω

λ
λ β β α β α β β β α β α β

ω
λ

β β α β α β λ β β α β α β
λ

 + + +
= −


 − + − + + + + = − +

+
 − + − − + + +
 +

 

On the other hand, we have 

2 2 2 2

110
1 3 2 3 1 3 2 3

1

2

F G G F
G i

u u u u u u u u

  ∂ ∂ ∂ ∂=  + + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 

Therefore 

( ) ( ) ( )( )

( ) ( ) ( )( )
110 3 2 2 3 2 3 1 3 2 2 3 3 1 3 2

3 2 2 3 2 3 1 3 2 2 3 3 1 3 2

1

2

1

2

G m n c m n c m n

i n m c n m c n m

β α β β β α α

β α β β β α α

= + + + + + +

− + − + −
 

Then  

( )21 21 110 11 110 202g G G Gω ω= + +  

Hence  

( ) ( ) ( )( )

( ) ( ) ( )( )
( )

( )

21 3 2 2 3 2 3 1 3 2 2 3 3 1 3 2

2 1 2 3 2 1 1 2 2

1

3 2 2 3 2 3 1 3 2 2 3 3 1 3 2

2 1 1 2 3 2 1 1 1 2 2 2 1 2 3 2

2 2
1

3 2 2 3 2 3 1 3

( ) ( )

2

1

4

( ) ( ) 2 ( )

2( 4 )

1

4

g m n c m n c m n

k k c

m n c m n c m n

k k c d k k c

d

m n c n m

β α β β β α α

β β α β α β
λ

β α β β β α α

λ β β λ α β α β β β
λ

β α β

= + + + + + ×

 + + +− − 
 

− + − + − ×

 − + − + + +
−  + 

+ + +( ) ( )( )
( ) ( )

( ) ( ) ( )( )
( ) ( )

2 2 3 3 1 3 2

2 1 2 3 2 1 1 2 2 1 2 1 2 3 2 2 1 1 2

2 2
1

3 2 2 3 2 3 1 3 2 2 3 3 1 3 2

2 1 2 3 2 1 1 2 2 1 2 1 2 3 2 2 1 1 2

2 2
1

2 ( ) ( ) ( ) ( )

2( 4 )

1

4

2 ( ) ( ) ( ) ( )

2( 4 )

c n m

d k k c k k c

d

i m n c m n c m n

d k k c k k c

d

β β α α

β β α β α β λ β β α β α β
λ

β α β β β α α

β β α β α β λ β β α β α β
λ

+ + ×

 − + − − + + +
+  + 

− + − + − ×

 + + − − + + +
 +

( ) ( ) ( )( )
( ) ( )
3 2 2 3 2 3 1 3 2 2 3 3 1 3 2

1 2 1 2 3 2 1 1 2 2 2 1 2 3 2

2 2
1

1

4

( ) ( ) 2 ( )

4

i m n c n m c n m

k k c d k k c

d

β α β β β α α

λ β β α β α β β β
λ

+


+ + + + + ×

 − + − + + +
−  + 
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Finally, we have 

22

1 20 11 11 02 21

1 1 1
(0) 2

2 3 2
C g g g g g

d

 = − − + 
 

 

( )1
2

0

Re (0)

Re( '( ))

C

a
µ

λ
= −  

1 2 0
2

Im( (0)) ( '( ))C a

d

µ λτ +
= −  

2 12Re( (0))Cγ =  

We know that 

1. 2µ  Determines the direction of the Hopf bifurcation. 

i If >0, the Hopf bifurcation is subcritical. 

ii If 
2µ <0, the Hopf bifurcation is supercritical and the 

bifurcated periodic solution exists for 01 aa > and 

01 aa < . 

2. 2γ  Determines the bifurcated periodic solution 

stability. 

i If 
2γ <0, the bifurcated periodic solutions on the 

central collector are stable. 

ii If 
2γ  >0, the bifurcated periodic solutions on the 

central collector are unstable. 

3. 
2τ  Determines the periods of the bifurcation of the 

periodic solutions. 

i If 
2τ >0, the periods increase. 

ii If 
2τ <0, the periods decrease. 

3.2. Numerical Simulation 

The numerical simulation confirms the results obtained by 

this method 

For 1and5.13.125.1 32 −−−==  c=  , c= , b=, aa . 

1. If 221.11 −=a . 

The attractor generated by the chaotic system (1) as shown 

in (Figure 2). 

 

Figure 2. The chaotic attractor for the system (1). 

2. If 440.11 −=a . 

The attractor generated by the chaotic system (1) as shown 

in Figure 3. 

 

Figure 3. The chaotic attractor for the system (1). 

4. Conclusion 

In this paper, a three - dimensional quadratic system with 

seven bifurcation parameters has been studied. Using a 

projection on the plane and choosing a suitable bifurcation 

parameter, this method has been proved that can help us to 

simplify the study of bifurcations and in particular the Hopf 

bifurcation, have been demonstrated that it occurs when the 

bifurcation parameter 1a  crosses the critical value 0a . The 

direction of the Hopf bifurcation and the stability of the 

bifurcated periodic solutions are analyzed in detail. 
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