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Abstract: An algebraic approach to the theory of countable functions is given. Compositions (superpositions) of functions are 
used instead of recursions. Arithmetic and analytic algorithms are defined. All closed sets are founded. Mathematically precise 
definitions of logic algorithms with quantifiers of existence and universality are given. Logic algorithm for fast-growing function 
is built as example. Classification of functions is given. There are non-computable functions. These functions are fictitious 
(useless) and their set is continual. The set of computable functions is countable. Incompleteness of disjunction and negation, 
conjunction and negation, of Pierce, Sheffer and diagonal Webb functions is proved. The completeness of the set of one-place 
functions and any all-valued essential function (Slupecki theorem) is proved for computable functions. Existence of generators of 
all computable functions is proved too.  
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1. Introduction 

The algebras of compositions (superpositions) of 
multi-valued, countably-valued, and real functions were 
defined mathematically precise by A. I. Mal'cev [1]. He called 
these algebras iterative and pre-iterative Post algebras. More 
precisely, iterative algebras can be called Jablonski algebras, 
since the results obtained by S. V. Yablonski [2] are 
constructed in these algebras. Pre-iterative algebra is more 
precisely called Post algebra, since E. L. Post [3] used 
pre-iterative algebra. Later Post algebra was ignored. In 
particular, only Jablonski algebra was used in the D. Lau [4] 
monograph devoted to algebras of multi-valued functions.  

Further, only Post algebra is used.  
The algebra of countably-valued functions differs 

significantly from the algebra of multi-valued functions. In 
particular, the completeness of disjunction and negation, as 
well as conjunction and negation, exists in all algebras of 
multi-valued functions, but does not exist in the algebra of 
countably-valued functions.  

The algebra of countably-valued functions contains the 
theory of algorithms, in particular, the theory of computable 
functions. But this algebra radically changes the theory of 

computable functions. In this algebra recursions are absent, 
but all recursive functions can be constructed. The 
composition algebra are more powerful than the recursion 
algebra.  

In addition to compositions, there are many other closure 
operations, the main purpose of which is to enlarge closed sets. 
This integration is intended to reduce the family of closed sets 
of functions, since this family is very large in the algebra of 
multi-valued functions, and especially in the algebra of 
countably-valued functions. The most powerful integration of 
closed sets is provided by	��	-operations of the closure [5]. In 
particular, in the algebra of two-valued functions there exists a 
countable family of sets closed by compositions, and only 2 
sets closed by	��	-operations.  

Building of classification of sets closed by operations other 
than compositions is inefficient. It is more efficient to confine 
some upper levels of classification by compositions 1 . In 
particular, the number of maximal sets in a two-valued algebra 
is three (two sets are fictitious).  

                                                             
1In [6], the hyper-continuation of maximal sets in a countable-valued logic is 

proved, but this hyper-continuation arises due to fictitious sets, including sets of 

non-computable functions. After removing fictitious sets, the number of other sets 

is countable. 
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The number of works devoted to recursions is very large, 
but the number of works devoted to compositions in algebras 
of countable-valued functions is insignificant. These are 
works of A. I. Mal'cev [6] on one-place functions, A. Salomaa 
[7, 8] on completeness, G. P. Gavrilov [9, 10] on completeness, 
and S. S. Marchenkov [11] on expressibility.  

Complete functions (complete generators), i.e. computable 
functions generating all other computable functions, are 
generally accepted to call Sheffer functions. But the term 
“complete” functions is more convenient, since it is more 
correct to call the negation of a conjunction Scheffer’s function. 
The negation of disjunction is generally called Webb function, 
but it is more correct to call this negation Pierce function. 
Webb function is more correctly to call its diagonal 

function:	��(�, �) = � + 1,��(�
, �� ≠ �
) = 0. All these 
functions are not complete in the algebra of countable 
functions. But new complete functions exist in this algebra (A. 
Salomaa [7] argued that complete functions do not exist in this 
algebra).  

2. Algebra of Countable-Valued 

Functions 

The algebra of countably-valued functions is one of 
algebras of compositions (Post algebras). The definition of 
algebras of compositions was given by A. I. Mal'cev. This 
definition has the following form for algebras of 
countable-valued functions.  

Definition 1. Post algebra PN is  

P� = (��; Ω) 
where carrier 	�� 	is the set containing all countably-valued 
functions,	�	is the set of natural numbers (the set of values of 
functions),	Ω	is the set of basic operations of the algebra.  

The set	Ω	consists of the following operations on functions:  
(1) �	is a cyclic permutation of variables, at which the first 

variable becomes last, then the numbering of the 
variables is corrected;  

(2) �	- permutation of two variables, first and last; this and 
previous operations give any permutation of variables;  

(3) ⊳	- identification (equality) of the first two variables;  
(4) ∗	- substitution the first variable of one function by 

another function.  
A subalgebra of Post algebra is an algebra, basic set of 

which is a set of functions closed by compositions, and the 
basic operations are compositions.  

Further, subalgebras of Post algebra are called algebras. 
Unless otherwise stated, all functions are everywhere defined.  

All algebras have the same set of operations. So, any 
algebra is defined by its carrier. So, it is generally accepted to 
identify algebra and its carrier. In particular, the intersection of 
two algebras means an algebra, the set of functions of which is 
the intersection of the sets of functions of these two algebras. 
The intersection of two algebras is an algebra, the union of two 
algebras may not be an algebra. But the union of two algebras 
generates an algebra containing them (and containing not only 

them).  
The algebra of countable functions refuses recursions. But 

any recursive functions can be generated by any complete 
functions. The theory of algorithms is described below from 
the point of view of Post algebra.  

3. Algorithms 

3.1. Arithmetic and Analytic Algorithms 

Algorithms are arithmetic and analytic.  
The exact definition of algorithms that compute functions 

and relations is given in 4.2 (Definition 11). The exact 
definition of all other algorithms does not exist by means of 
logic language. Conditionally, an algorithm is a program 
presented by a programming language.  

Arithmetic algorithms are designed to calculate functions 
and relations. Relations are sets, and all sets are relations (in 
Post algebra). All functions are relations too.  

Relations and functions are represented by tables and are 
denoted by	�(�
, . . . , ��)	and	�(�
, . . . , ��), where	�	and	�	are 
table names,	�
, . . . , ��	are column names.  

Arithmetic algorithms are also denoted 
by	�(�
, . . . , ��)	and 	�(�
, . . . , ��), where 	�	and	�	are names 
of the algorithms,	�� 	are free variable of formulas fulfilled by 
algorithms. This designation coincides with the designation of 
relations, but it is always clear from the text what is a name of 
algorithm and what is a name of relation or function.  

Analytic algorithm analyzes arithmetic algorithms, or other 
analytic algorithms. This analysis is needed to identify 
algorithms which work without stopping, i.e. infinitely long 
for calculating some line in table of function or relation. In 
particular, analytic algorithm can find that the arithmetic 
algorithm works without stopping to find a nonzero result of 
the Fermat grate equation.  

Analysis of algorithms is performed by compiler and 
interpreter of any programming language (compiler or 
interpreter analyzing the Fermat equation are not created and 
are unlikely to be created). An algorithm is executed only after 
a positive analysis, but this does not guarantee that the 
algorithm is non-stopping. There are theorems proving that 
there are algorithms that work with stopping, but they are not 
detected by analysis.  

Further, only arithmetic algorithms are considered, but it is 
assumed that analysis of these algorithms can preserve 
non-stopping.  

Next, construction of some classification of relations will 
be done. These relations are called sets.  

3.2. Sets 

Further, sets are one-place relations. But the obtained 
results are valid for other sets too. Sets have complements.  

Definition 2. A family of sets is called closed if each set of 
the family contains a complement of this set.  

Classes of sets are next: decidable, almost decidable, 
partially decidable, (computably) enumerable, partially 
enumerable, and non-computable. Any set belongs to only one 
of these classes and is called by name of the class. An analysis 
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of an algorithm, which calculates a set, may not determine 
which class contains this set, even though this set belongs to 
only one of these classes.  

Definition 3. A set is decidable if algorithm calculates 
elements of this set in order of increase of element values.  

It is impossible to prove by calculations that a set is 
decidable, since it can be proved only after infinite number of 
calculations. It is possible to prove this by analysis of the 
algorithm calculated this set.  
Lemma 1. A closure of a decidable set is a decidable set.  

Proof. The algorithm computing a decidable set calculates 
simultaneously the complement of this set. The elements of 
this complement are the numbers, which precede the first 
element of the decidable set and which are between two 
elements of this set. Therefore, the algorithm calculates the 
elements in order of increasing their values.  

Definition 4. A set is almost decidable if an algorithm 
calculates elements of this set in order of increasing values of 
these elements only after a certain number of elements. We 
denote this number by	 .  

It is impossible to calculate 	 . For this you need to 
calculate all elements. Therefore, m can be determined by 
analyzing the algorithm. Knowledge of	 	is necessary only 
for calculating the complement of this set. This complement is 
a partially decidable set (PDS).  

Definition 5. A set is partially decidable if an algorithm 
calculates elements of this set with errors, and with corrections 
of all of them by finite number of times.  

A PDS can be obtained by calculating the complement of 
the almost decidable set. A PDS is empty until the first 
element of the almost decidable set. Then this PDS contains 
all elements preceding the first element. After calculating the 
second element, this PDS contains all elements preceding the 
second element except the first element. So, this PDS contains 
all elements preceding any next element, except for elements 
of the almost decidable set. If a next element of almost 
decidable has not increasing value, then this element is 
removed from the PDS, i.e. this value is erroneous.  

A PDS is calculated with errors up to a certain number of 
elements of almost decidable set, after which all erroneous 
elements of PDS are deleted. This number is	 . Further, all 
calculated elements are not erroneous.  

Any set is a PDS if it is calculated with errors and their 
deleting only up to a certain element. After reaching this 
element, all other elements are calculated without errors. So, a 
PDS can be calculated independently, without simultaneously 
calculating an almost decidable set.  

Lemma 2. The closure of an almost decidable set is this set 
and its PDS.  

Proof. It was shown above that complement of an almost 
decidable set is a PDS. It remains to prove that complement of 
any PDS is the almost decidable set.  

This complement occurs simultaneously with the 
calculation of the PDS. The complement is empty until the 
first element is calculated. After this, the complement contains 
all elements preceding the first element. With each next 
element of the PDS, the complement contains all the 

preceding elements, except for elements of the PDS. If a next 
element of the PDS is erroneous, then it is added to the 
complement.  

Erroneous elements do not occur after reaching element 
with number	 . Further, the complement contains elements 
only with increasing values. Therefore, the complement of the 
PRM is an almost decidable set.  

Definition 6. The set is (computably) enumerate if the 
algorithm calculates its elements without order in values down 
to infinity.  

An example of an enumerable set is a set of values of a 
function that non-monotonically increases up to its variable to 
be infinite.  

There are partial enumerable sets (PES).  
Definition 7. A set is partial enumerable if the algorithm 

calculates its elements with errors and then deleting all of 
them only by infinitely many times.  

A PES can be obtained by calculating the complement of an 
enumerable set. This PES is empty until the first element of 
the enumerable set. After that, the PES contains all elements 
preceding the first element. And the PES contains all elements 
presiding any next element of the enumerable set, except for 
elements of the enumerable set. If a next value of an element is 
not increasing, then this element is removed from the PES, i.e. 
this element was erroneous.  

Any set is a PES if its calculation creates erroneous 
elements but deletes all of them only by infinitely times. This 
means that a PCP can be calculated independently, without 
simultaneously calculating the enumerable set.  

Lemma 3. The closure of an enumerable set is complete.  
Proof. The proof repeats the proof of the previous lemma.  
It was shown above that a complement of enumerable set is 

a PES. It remains to prove that the complement of any PES is 
an enumerable set.  

The complement is calculated simultaneously with the 
calculation of the PES. The complement is empty before 
calculating the first element of the PES. After this complement 
contains all elements preceding the first element. And this 
complement contains all elements preceding the any next 
elements except elements of PES. If a next element of the PES 
is erroneous, then this element is added to the supplement. In 
this case, elements of the complement have increase and 
decrease values. So, the complement is indeed enumerable, 
without erroneous elements.  

Definition 8. A set is computable if there is an algorithm for 
calculating all its elements.  

This definition is different from the generally accepted. It is 
generally accepted that a set is computable (algorithmically 
decidable) if it is decidable. An enumerable set is 
algorithmically undecidable, since finding out an element to 
belong to the set leads to non-stop calculating, if this element 
does not belong to the set. But analysis of the algorithm does 
not allow to fulfill the algorithm. And any algorithm must be 
analyzed before computing, even this algorithm is decidable.  

This definition of computability is not constructive, since 
an algorithm is considered computable if it works one hundred 
years. In addition, compilers and interpreters do not perform a 
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complete analysis of algorithms.  
Theorem 1. A closure of decidable, almost decidable, and 

enumerable sets contains all computable sets.  
Proof. All elements of a computable set are calculated in 

any sequence of their values, and all erroneous elements are 
excluded. In accordance with the lemmas shown above, the 
closure of first 5 classes of sets is the same class of sets.  

The family of computable sets is countable, since the set of 
algorithms is countable. All other sets are non-computable, 
and their family is continual, since the family is a family of all 
subsets of the natural set.  

A similar definition of computability exists for functions.  
Definition 9. A function is computable if there is an 

algorithm for calculating it.  
This definition holds for partial functions too. The 

algorithm for calculating these functions must calculate its 
domain. Otherwise, the algorithm will be blocked as a result of 
analysis.  

Functions, like relations, are also decidable, almost 
decidable, partially decidable, enumerable, partially 
enumerable, and non-computable if they are such relations. 
Any function belongs to only one of these classes of functions.  

The set of computable functions is countable, the set of 
non-computable functions is continual.  

4. Logic Algorithms 

4.1. Definition 

The exact definition of an algorithm is reduced to the 
definition of a logic algorithm.  

Logic algorithms are built according to the rules of logic.  
Each calculated object must have a definition. In logic, the 

definition of an object is given by a logic formula, a special 
case of which is equality.  

Equalities are the simplest definitions of functions. The left 
part of equality is a function in the form 	�(�
, . . . , ��) , 
where 	�	 is the name of the function. The right part is an 
arithmetic expression.  

An example of definition by equality is: 	!"(�
, ��) =
�#$%&'(2, ��), where	!"	is an Ackermann function,	�#$%&' 	is 
a fast-growing function, the definition of which already exists. 
The variables in the left part of this equality can be replaced by 
values, for which the function should be calculated. It is more 
correct to represent	�#$%&'(2, ��)	as	�#$%(�
, 2, ��), but it is 
generally accepted to use the subscript in definition of	�#$%.  

Other definitions of function use logic formulas. For 
example,  

�#$%)(�
, ��) = �* ⇄  = 0 ∧ �* = �
 + �� ∨ 

∨  = 1 ∧ �* = �
 ⋅ �� ∨  > 1 ∧ (�� = 0 ∧ �* = 1 ∨ ��= 1 ∧ �* = �
 ∨	∨ �� > 1 ∧	�* 	= �#$%)0
	(�
, �#$%)(�
, �� − 1))) 
Simpler example is definition of Fibonacci functions:  

�2(�
) = �* ⇄ �
 = 0 ∧ �* = 0 ∨ �
 = 1 ∧ 

∧ �* = 1 ∨ �
 ≥ 2 ∧ �* = �2(�
 − 1) + �2(�
 − 2) 
The relations are defined as  

�(�
, . . . , ��) ⇄ logic formula without ⇄ 

It must be used the lower part of	⇄:  

�(�
, . . . , ��) ← logic formula without ⇄ 

Then the left part of the definition is true if the right part is 
true. It is enough to calculate relations and functions.  

The upper part in	⇄	means that truth of the left part implies 
truth of the right part. This is not applicable for calculations, 
since a calculation is possible if truth of the left part follows 
from truth of the right side.  

4.2. Skolem Formulas 

There are several ways to represent any logic formula. But 
the Skolem formula eliminates this uncertainty.  

The reduction to this formula is carried out in 7 steps:  
(1) reduction to the form with negations only of relations;  
(2) reduction to the prefix form, in which all quantifiers are 

at the beginning of the right part of definition;  
(3) deletion of existential quantifiers with replacing their 

variables by Skolem functions, the variables of the 
universal quantifiers are denoted by	�	with subscript, 
the Skolem functions are denoted by	#	with subscript;  

(4) deletion of universal quantifiers; their variables are 
absent in the left part;  

(5) replacing	⇄	with	←;  
(6) reduction of the right part to disjunctive normal form;  
(7) reduction to several definitions, the right side of which 

is a conjunct of disjunctive normal form; this is possible 
because a disjunctive normal form is true if any of its 
conjuncts are true, i.e. the truth of any conjunct entails 
truth of the left part.  

Definitions in this form are called rules or clauses. A rule is 
represented as  

�(�
, . . . , ��) ← �
 ∧. . .∧ �) 

where all	�� 	are relations or negations of relations.  
Definition 10. Logic algorithm is a set of rules that are a 

logic definition of a calculated object in Skolem form.  
Now one can give a precise definition of the algorithm.  
Definition 11. Algorithm (arithmetic algorithm) is a 

program for calculating functions or relations, if the program 
can be presented as a logic program.  

A program for calculating functions or relations presented 
in other programming languages may not be algorithm if this 
program calculates an object that does not have a logic 
definition. In other cases, a program is algorithm.  

4.3. Functions	CDEFG 

The definition of	�#$%)(�
, ��)	presented above generates 
the next rules.  

�#$%*(�
, ��) = �
 + �� 
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�#$%
(�
, ��) = �
 ⋅ �� 
�#$%)(�
, 0) = �* 	← 	 > 1 ∧ �* = 1 

�#$%)(�
, 1) = �* 	← 	 > 1 ∧ �* = �
 
�#$%)(�
, ��) = �* 	← 	 > 1 ∧ �� > 1 ∧ 

∧ �* = �#$%)0
(�
, �#$%)(�
, �� − 1)) 
These rules are an algorithm. The execution of this 

algorithm is given by the rule  

�#$%)H (�H
, �H�) 
where	 H , �H
, �H�	are concrete values of	 , �
, ��.  

Calculations are performed in the next sequence  

�#$%)H (�H
, �H�) = �#$%)H 0
(�H
, �#$%)H (�H
, �H� − 1)) = 

= �#$%)H 0
H (&H',IJKLMH N'(&H',IJKLMH (&H',&HO0�)))P...P 

= �#$%)H 0
(�H
, �#$%)H 0
(�H
, �#$%)H 0
( 
�H
, �#$%)H 0
(. . . (�#$%)H 0
(�H
, �H
)))))) 

Next, 	�#$%)H 0
(�H
, �H
)	with a lower value 	 =  H − 1	 is 
calculated.  

Let the value of	 	be decreased to 3. Then  

�#$%Q(�H
, �H
) = �#$%�(�H
, �#$%Q(�H
, �H
 − 1)) = 

= �#$%�(�H
, �#$%�(�H
, �#$%Q(�H
, �H
 − 2))) =. . . = 

= �#$%�(�H
, �#$%�(�H
, �#$%�( 
�H
, �#$%�(. . . (�#$%�(�H
, �H
)))))) 

If	 = 2, then  

�#$%�(�H
, �H
) = �#$%
(�H
, �#$%�(�H
, �H
 − 1)) = 

= �#$%
(�H
, �#$%
(�H
, �#$%�(�H
, �H
 − 2))) =. . . = 

= �#$%
(�H
, �#$%
(�H
, �#$%
(�H
, �#$%
( 
. . . (�#$%
(�H
, �H
)))))) = �H
&H' 

I.e.	�#$%�(�H
, �H
) = �
&' . Substituting this result into the 
previous expression with 	 = 2 , we get 	�#$%Q(�H
, �H
) =
�H
&H'

RH '
. Further substitutions lead to increase the number of 

powers for one.  

5. Classification of Functions and 

Algebras 

In any theory, the classification of its objects is a main 
problem.  

First, classification of all objects is constructed. This 
classification allows to detect of fictitious (useless) objects. 
Then more deeper classification is built for only useful 
objects.  

The objects of algebra of countably-valued functions are 

functions and subalgebras of this algebra.  
Let’s start with classification of subalgebras. This 

classification contains several levels.  
The top level contains algebra PN. By definition, it is a 

subalgebra too.  
The second level contains subalgebras of computable and 

non-computable functions. The subalgebra of non-computable 
functions is fictitious (useless in PN); therefore, a further 
classification is constructed only for subalgebra of 
computable functions.  

The third level contains the countable set of 
subalgebras	S� 	(0 ≤ 2 ≤ ∞), where	2	is the minimal number 
of functions generated algebras of the subalgebra. There are 
[12] subalgebras not generated by functions ( 2 = 0 ) and 
subalgebras generated by an infinite set of functions	(2 = ∞).  

The subalgebra 	SV	 contains continuum of algebras, 
algebras	S� 	with finite	2	contain countable set of algebras.  

Below it will be shown that all algebras	S� 	(except	S
) are 
fictitious (useless). Therefore, further classification is a 
classification of the subalgebra	S
. But this classification is 
isomorphic to the classification of computable functions. 
Further, classification of functions is built.  

The class of computable functions is on the second level of 
function classification. The class of non-computable functions 
are on the second level too. The class of all functions is on the 
top level.  

Further, classification is constructed for computable 
functions.  

The classification of computable functions is isomorphic to 
the classification of the subalgebra	S
.  

Each function generates some algebra by compositions. 
There are much functions that generate the same algebra. This 
set is a class of the classification, since any function belongs to 
only one class which is generated by these functions. 
Therefore, classes do not intersect.  

Each class of functions belongs to unique algebra which is 
generated by these functions. This algebra belongs to 	S
 , 
since	S
	contains all algebras generated by a single function. 
Consequently, the classification of the subalgebra 	S
	 is 
isomorphic to the classification of computable functions. So 
there is a one-to-one correspondence between these 
classifications.  

Not all algebras are generated by a single function. There 
are algebras generated by only a few functions. These algebras 
are fictitious (useless) from the point of view of the 
classification of functions (the classification of functions is the 
main problem of the algebra of countably-valued functions).  

Fictitious objects are deleted in any theory. Therefore, 
fictitious algebras are deleted. The study of their properties 
and construction of further classification are useless. The set 
of algebras contained in fictitious subalgebras is continual 
(due to	SV). The set of algebras contained in	S
	is countable. 
Therefore, the statement in [12] is erroneous. This statement 
says that properties of algebras of multi-valued functions are 
significantly different from properties of the algebra of 
two-valued functions due to continuity. Fictitious objects are 
removed from any theory, so their properties are not 
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interesting.  
Further the classification of functions is continued.  
The classification of functions in Post algebras uses a 

composition of functions. Therefore, 5 classes of functions: 
decidable, almost decidable, partially decidable, enumerable, 
and partially enumerable, are not included in this 
classification. The function of one of these classes can 
generate functions of other classes by compositions, in 
particular, by identification of variables.  

The third level of classification of functions contains 
classes called maximal. The set of maximal classes is 
countable. As in algebras of multi-valued functions, these 
classes form 3 families (I. G. Rosenberg [13] called 6 families, 
but 3 of them are fictitious; in the algebra of two-valued 
functions, 2 such families are fictitious [14]). Non-fictitious 
families are families of self-dual (auto-dual) functions, 
functions that preserve nontrivial equivalence relations, and 
functions that preserve central relations.  

A deeper classification of functions is difficult because of 
infinite sets of classes at almost every level of classification.  

All functions in Post algebras are everywhere defined. But a 
partial function can have the single way to be continued to an 
everywhere defined function. Therefore, the classification of 
partial functions coincides with the classification of 
everywhere defined functions.  

6. Incompleteness Theorems 

A function containing 	 #�(�
, ��) , 	 2W(�
, ��)	and 	� +
1	 is represented further by a logic formula 
with 	 #�(�
, ��)	 replaced by 	�
 ∨ �� , 	 2W(�
, ��)	by 	�
 ∧��	and	� + 1	by	�. This image of functions is more familiar.  

Completeness of theorems in the countably-valued algebra 
differs significantly from completeness of these theorems in a 
multi-valued algebra.  

Theorem 2. In PN the sets	�, �
 ∨ ��	and	�, �
 ∧ ��	do not 
generate all functions.  

Proof. It is enough to restrict the proof to generating 
one-place functions.  

The negation 	� = � + 1	 generates one-place functions 
without values 0.  

The function	�
 ∨ ��	generates only one-place function	�. 
Substitutions of the negation into	�
 ∨ ��	and of	�
 ∨ ��	into 
the negation generate only one-place function	�.  

The function	�
 ∧ ��	generates only one-place function	�. 
Substitution 	�
 ∧ ��	 into the negation generates only 
one-place function	�. Substitution of the negation into	�
 ∧��	generates only one-place function	�(0) = 0, �(� ≠ 0) = �.  

One place functions with several values 0 are not generated. □ 

Corollary 1. The sets 	�, �
 ∨ ��	 and 	�, �
 ∧ ��	 are not 
complete.  

Proof. These sets do not generate all functions.  
This is in contrast to multi-valued algebras in which these 

sets are complete.  
Theorem 3. The Pierce (�
 ∨ �� ), Sheffer (�
 ∧ �� ) and 

diagonal Webb (� + 1	if	�
 = �� = �, 0 if	�
 ≠ ��) functions 
are not complete.  

Proof. The Pierce and Sheffer functions are not complete, 
since negations of 	�
 ∨ ��	 and of 	�
 ∧ ��	 do not contain 
values 0. The diagonal Webb function is not complete since 
this function generates only one-place functions 	� +
 with	1 ≤  < 2W�%Y.  

7. Slupetski Theorem 

7.1. Theorem 

The Slupetski theorem holds in PN.  
Theorem 4. Let the algebra have countable computable 

functions, let the set contain all one-place functions and any 
two-place all-valued essential function 	Z . Then this set is 
complete.  

Proof. J. Slupetski used the Lukasiewicz function	[\. In 
modern notation, this function for finite	]	is  

[\(�
, ��) = ^(S*,*J_,_(�
, ��), (^(S*,
J_,'(�
, ��), (… ( 
^(S*,a0
J_,bN'(. . .  . . . (^(Sa0
,*JbN',_(�
, ��), (… (^(Sa0
,a0�JbN',bNO( 
�
, ��), ^(Sa0
,a0
JbN',bN'(�
, ��)))). . . ))). . .   . . . ))))))) 

where 	^	 and 	S�',�O
Jc',cO 	 are: 	^(0, �) = �, ^(�, 0) =

�, S�',�O
Jc',cO(2
, 2�) = #�',�O ,  �
 ≠ 2
 ∨ �� ≠ 2� →

S�',�O
Jc',cO(�
, ��) = 0 . Constants 	#�',�O 	 are any, 

functions 	^	 and 	S�',�O
Jc',cO 	 are generated by 	Z	 and one-place 

functions.  
Any function	e(�
, ��) = [\(�
, ��)	if	#�',�O = e(2
, 2�).  
Function 	[\	 does not exist if 	] = ∞ . But the new 

function	[\	exists:  

[\(�
, ��) = ^(Sf(*),g(*)
Jh(_),i(_)(�
, ��), (^(Sf(
),g(
)

Jh('),i(')(�
, ��), 

	(. . . (^(Sf(a(aj
)/�),g(a(aj
)/�)
Jh(b(bl')/O),i(b(bl')/O) (�
, ��))). . . )))) 

where	m	and	�	are the left and right parts of Cantor’s number of 

the pair	(2
, 2�)	in	S�',�O
J(�',�O).  

Then any function 	e(�
, ��) = [\(�
, ��)	 if 	#f(�),g(�) =
e(m(2), �(2)).  

If	�
 ≤ m(]), �� ≤ �(])	then  

[\(�
, ��) = ^(Sf(*),g(*)
Jh(_),i(_)(�
, ��), (^(Sf(
),g(
)

Jh('),i(')(�
, ��), 

(. . . (^(Sf(a),g(a))
Jh(b),i(b) (�
, ��))). . . )))) 

since 	^(Sf(�),g(�))
Jh(c),i(c) (�
, ��) = 0	 if 	2 > ]	 and 	�
 ≤ m(]), �� ≤

�(]).  
If	] = ∞	then  

[\(�
, ��) = ^(Sf(*),g(*)
Jh(_),i(_)(�
, ��), ( 

^(Sf(
),g(
)
Jh('),i(')(�
, ��), . . . ))) 

This formula has infinite number of parenthesis. But the 
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next formula has finite number of them:  

[\(�H
, �H�) = ^(Sf(*),g(*)
Jh(_),i(_)(�H
, �H�), ( 

^(Sf(
),g(
)
Jh('),i(')(�H
, �H�), . . . , ^(Sf(n),g(n)

Jh(o),i(o)(�H
, �H�))))) 
where	�H
,	�H�	are concrete values, and	"	is a Cantor’s number 

of 	(�H
, �H�) . The formula holds since 	^(Sf(�),g(�))
Jh(c),i(c) (�H
, �H�) =

0	if	2 > ".  
Then 	e(�H
, �H�) = [\(�H
, �H�)	 for any 

function	e	if	#f(�),g(�) = e(m(2), �(2)).  

It is necessary to prove that	^	and	S�',�O
p(�',�O)	are generated by 

the function	Z	and one-place functions.  

7.2. Function S 

I. Slupetsky built this function in	]	steps. This does not 
apply to	] = ∞. Therefore a new construction is given. This 
construction is more simple.  

The construction starts with	^(0,0). Since the function	Z	is 
all-valued, there are 	#
	 and 	#�	 such that 	Z(#
, #�) = 0 . 
Then	^(0,0) = Z(#
, #�).  

There are 	q
	 and 	q�	 with 	Z(q
, q�) = 1 . Therefore, 
	^(0,1) = Z(q
, q�). And so on.  

The function	^	has the next definition:  

^(�
, ��) = �* ⇄ �
 = 0 ∧ 

∧ (∃(#
, #�)	Z(#
, #�) = �� ∧ �* = Z(#
, #�)) ∨ 

∨ �� = 0 ∧ ∃(q
, q�)	Z(q
, q�) = �
 ∧ �* = Z(q
, q�) ∨ 

∨ �
 ≠ 0 ∧ �� ≠ 0 ∧ �* = Z(�
��) 
So	Z	generated	^.  
Definition of	^	generates equations  

^(0, ��) = ��, ^(�
, 0) = �
 
where 	�
	 and 	��	are values of 	Z . Only this was used in 
previous subsection.  

7.3. Function	tuv,uw
Duv,uw 

The definition of	S�',�O
Jc',cO 	given by J. Slupetski is applicable 

to 	] = ∞ . But function 	^�	 used in the definition has 
definitions non-applicable to	] = ∞.  

The function  

S�',�O
Jc',cO(�
, ��) = �Jc',cO(^�(��'(�
), ��O(��))) 

where one-place functions 	�x(0) = y, �x(� ≠ 0) =
0	and	�x(y) = 0, �x(� ≠ y) = 1.  

If	^�(0,0) = 0 ∧ ^�(1,1) = 1, then  

S�',�O
Jc',cO(2
, 2�) = #�',�O , 

	�
 ≠ 2
 ∨ �� ≠ 2� → S�',�O
Jc',cO(�
, ��) = 0 

Indeed,  

S�',�O
Jc',cO(2
, 2�) = ZJc',cO z^� {��'(2
), ��O(2�)|} = 

= ZJc',cO(^�(0,0)) = ZJc',cO(0) = #�',�O , 
�
 ≠ 2
 ∨ �� ≠ 2� → 

→ S�',�O
Jc',cO(�
, ��) = ZJc',cO z^� {��'(�
), ��O(��)|} = 

= ZJc',cO(^�(1,1)) = ZJc',cO(1) = 0 

7.4. Function S2 

The Slupecki definition of 	^�	 is very complex and 
non-applicable to	] = ∞	The next definition is very simple:  

^�(�
, ��) = !Q(Z(!
(�
), !�(��))) 
where one-place functions	!
, !�, !Q	are  

!
(0) = #
, !
(� ≠ 0) = q
, 
!�(0) = #�, !�(� ≠ 0) = q�, 

!Q(Z(#
, #�)) = 0, !Q(� ≠ Z(#
, #�)) = 1 

and where	∃(#
, #�, q
, q�) Z(#
, #�) ≠ Z(q
, q�)	holds.  
The definition of 	^�	 generates all equations used in the 
previous subsection:  

^�(0,0) = 0, ^�(1,1) = 1 

Indeed, 

^�(0,0) = !Q {Z~!
(0), !�(0)�| = !Q~Z(#
, #�)� = 0, 
^�(1,1) = !Q(Z(!
(1), !�(1))) = !Q(Z(q
, q�)) = 1 

7.5. Logic Algorithm 

Any definition must not contain dots, except dots for 
variable number. The next algorithm does not contain dots:  

[\(0, �
, ��) = Sf(*),g(*)
Jh(_),i(_)(�
, ��). 

[\(y, �
, ��) = ^([\(y − 1, �
, ��), Sf(x),g(x)
Jh(�),i(�))(�
, ��). 

This is a new function	[\:  

[\(y, �
, ��) = ^(^(… ^(Sf(*),g(*)
Jh(_)(R',RO),i(_) , 

Sf(
),g(
)
Jh('),i(')(�
, ��), . . . , Sf(x),g(x)

Jh(�),i(�)(�
, ��)))) 
at	y → ∞.  

Any function 	e(�
, ��) = [\(", �
, ��)	 if 	"	 is Cantor 
number of	(�
, ��), and if	#f(�),g(�) = e(m(2), �(2)). 

The functions	^	and	S�',�O
Jc',cO 	have the next algorithm. 

^(�
, Z(#
, #�)) = Z(#
, #�) ^(Z(#Q, #�), ��) = Z(#Q, #�). 
S�',�O
Jc',cO(�
, ��) = �Jc',cO(^�(��'(�
), ��O(��))). 
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�x(0) = y.  �x(� ≠ 0) = 0. 
�x(y) = 0.  �x(� ≠ y) = 1. 

^�(�
, ��) = �* 	← 	Z(#
, #�) ≠ Z(#Q, #�) ∧ 

∧ �* = !Q(Z(!
(�
), !�(��))) 
!
(0) = #
.   !
(� ≠ 0) = #Q. 
!�(0) = #�.   !�(� ≠ 0) = #�. 

!Q(Z(#
, #�)) = 0.  !Q(� ≠ Z(#
, #�)) = 1. 
The execution of algorithm of 	[\	 is given by the 

rule 	[\("H, �H
, �H� , where 	"H, �H
, �H�	 are concrete values 
of	", �
, ��. The function	Z	and	e	must be given.  

Since	"H, �H
�H�	are any, the Slupetski theorem is proved.  

7.6. Completeness at	� = ∞ 

It is proved that the set of all one-place functions and a 
two-place all-valued essential function generates all two-place 
functions	e. This set generates all multi-place functions since 
some functions of 	e	generate all functions. This holds for 
infinite 	]	 too, since two-place functions generating all 

computable functions exist in PN. □ 

8. Complete Generators 

A complete generator is a function generating all 
computable functions by compositions.  

Theorem 5. Complete generators exist. The set of complete 
generators is infinite.  

Proof. Two one-place functions 	� + 1	 and 	� −
[√�]�	 generate all computable on-place functions (R. 
Robinson theorem [15])2. So a two-valued function generates 
all computable functions if the function generates these two 
one-place functions.  

Let two-place function 	Z	 have 	Z(�, �)) = � − [√�]� . 
Let 	Z(Z(�, �), �) = Z(� − [√�]�, �) = � + 1 . And 
let 	Z(�
, ��) = 0	 if 	�
 ≠ �� − [√��]� . This 
function	Z	generates all computable one-place function.  

By analogy, an infinite set of complete generators can be 

constructed. □ 

9. Conclusion 

A new theory of algorithms has been built. This theory 
refuses recursions but can generate all recursive functions. 6 
classes of sets were found - decidable, almost decidable, 
partially decidable, enumerable, partially enumerable and 
non-computable sets. Any set belongs to only one of these 
classes. The family of the first five classes is closed with 
respect to the complement operation.  

The new mathematically precise definition of a logic 
algorithm is given. This algorithm solves problems that cannot 
be solved in other algorithms. In particular, the problems of 
                                                             
2In � − [√�]�, � is a real number and [√�] means integer part of √�.  

quantifiers of existence and universality are solved.  
In the case of universal quantifier, a rule contains variables 

in the right part such that the variables absent in the left part. 
The right part can contain conjuncts which limit the range of 
these absent values. If the right part is true for some value of 
one of the absent values, then it is true for all it values of its 
range. Therefore, it is sufficient to replace all absent values by 
the minimum value of their range. Further, the rules are 
executed without absent values and without conjuncts that 
limit the range.  

Theorems of completeness are found which hold in 
algebras of multi-valued functions and not does not hold in 
the algebra of countable-valued functions. In particular, 
these theorems do not hold for disjunctions and negations, 
for conjunctions and negations, for disjunctions, 
conjunctions and negations, as well as for the Pierce, Sheffer 
and diagonal Webb functions.  

A new proof of the Slupetsky theorem, applicable to 
countable-valued functions, was constructed.  

The theorem of existence of complete generators in PN is 
proved. But concrete complete generator was not found. 
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