

Pure and Applied Mathematics Journal
2019; 8(1): 1-9
http://www.sciencepublishinggroup.com/j/pamj
doi: 10.11648/j.pamj.20190801.11
ISSN: 2326-9790 (Print); ISSN: 2326-9812 (Online)

Algebra of Countably Functions and Theorems of
Completeness

Maydim Malkov

Department of Mathematics, Research Center for Artificial Intelligence, Moscow, Russia

Email address:

To cite this article:
Maydim Malkov. Algebra of Countably Functions and Theorems of Completeness. Pure and Applied Mathematics Journal.

Vol. 8, No. 1, 2019, pp. 1-9. doi: 10.11648/j.pamj.20190801.11

Received: February 15, 2019; Accepted: March 18, 2019; Published: April 9, 2019

Abstract: An algebraic approach to the theory of countable functions is given. Compositions (superpositions) of functions are
used instead of recursions. Arithmetic and analytic algorithms are defined. All closed sets are founded. Mathematically precise
definitions of logic algorithms with quantifiers of existence and universality are given. Logic algorithm for fast-growing function
is built as example. Classification of functions is given. There are non-computable functions. These functions are fictitious
(useless) and their set is continual. The set of computable functions is countable. Incompleteness of disjunction and negation,
conjunction and negation, of Pierce, Sheffer and diagonal Webb functions is proved. The completeness of the set of one-place
functions and any all-valued essential function (Slupecki theorem) is proved for computable functions. Existence of generators of
all computable functions is proved too.

Keywords: Discrete Functions, Complete Sets of Functions, Algebra Countably-valued Functions, Logic Programming,
Theory of Algorithms

1. Introduction

The algebras of compositions (superpositions) of
multi-valued, countably-valued, and real functions were
defined mathematically precise by A. I. Mal'cev [1]. He called
these algebras iterative and pre-iterative Post algebras. More
precisely, iterative algebras can be called Jablonski algebras,
since the results obtained by S. V. Yablonski [2] are
constructed in these algebras. Pre-iterative algebra is more
precisely called Post algebra, since E. L. Post [3] used
pre-iterative algebra. Later Post algebra was ignored. In
particular, only Jablonski algebra was used in the D. Lau [4]
monograph devoted to algebras of multi-valued functions.

Further, only Post algebra is used.
The algebra of countably-valued functions differs

significantly from the algebra of multi-valued functions. In
particular, the completeness of disjunction and negation, as
well as conjunction and negation, exists in all algebras of
multi-valued functions, but does not exist in the algebra of
countably-valued functions.

The algebra of countably-valued functions contains the
theory of algorithms, in particular, the theory of computable
functions. But this algebra radically changes the theory of

computable functions. In this algebra recursions are absent,
but all recursive functions can be constructed. The
composition algebra are more powerful than the recursion
algebra.

In addition to compositions, there are many other closure
operations, the main purpose of which is to enlarge closed sets.
This integration is intended to reduce the family of closed sets
of functions, since this family is very large in the algebra of
multi-valued functions, and especially in the algebra of
countably-valued functions. The most powerful integration of
closed sets is provided by	��	-operations of the closure [5]. In
particular, in the algebra of two-valued functions there exists a
countable family of sets closed by compositions, and only 2
sets closed by	��	-operations.

Building of classification of sets closed by operations other
than compositions is inefficient. It is more efficient to confine
some upper levels of classification by compositions 1 . In
particular, the number of maximal sets in a two-valued algebra
is three (two sets are fictitious).

1In [6], the hyper-continuation of maximal sets in a countable-valued logic is

proved, but this hyper-continuation arises due to fictitious sets, including sets of

non-computable functions. After removing fictitious sets, the number of other sets

is countable.

2 Maydim Malkov: Algebra of Countably Functions and Theorems of Completeness

The number of works devoted to recursions is very large,
but the number of works devoted to compositions in algebras
of countable-valued functions is insignificant. These are
works of A. I. Mal'cev [6] on one-place functions, A. Salomaa
[7, 8] on completeness, G. P. Gavrilov [9, 10] on completeness,
and S. S. Marchenkov [11] on expressibility.

Complete functions (complete generators), i.e. computable
functions generating all other computable functions, are
generally accepted to call Sheffer functions. But the term
“complete” functions is more convenient, since it is more
correct to call the negation of a conjunction Scheffer’s function.
The negation of disjunction is generally called Webb function,
but it is more correct to call this negation Pierce function.
Webb function is more correctly to call its diagonal

function:	��(�, �) = � + 1,��(�
, �� ≠ �
) = 0. All these
functions are not complete in the algebra of countable
functions. But new complete functions exist in this algebra (A.
Salomaa [7] argued that complete functions do not exist in this
algebra).

2. Algebra of Countable-Valued

Functions

The algebra of countably-valued functions is one of
algebras of compositions (Post algebras). The definition of
algebras of compositions was given by A. I. Mal'cev. This
definition has the following form for algebras of
countable-valued functions.

Definition 1. Post algebra PN is

P� = (��; Ω)
where carrier 	�� 	is the set containing all countably-valued
functions,	�	is the set of natural numbers (the set of values of
functions),	Ω	is the set of basic operations of the algebra.

The set	Ω	consists of the following operations on functions:
(1) �	is a cyclic permutation of variables, at which the first

variable becomes last, then the numbering of the
variables is corrected;

(2) �	- permutation of two variables, first and last; this and
previous operations give any permutation of variables;

(3) ⊳	- identification (equality) of the first two variables;
(4) ∗	- substitution the first variable of one function by

another function.
A subalgebra of Post algebra is an algebra, basic set of

which is a set of functions closed by compositions, and the
basic operations are compositions.

Further, subalgebras of Post algebra are called algebras.
Unless otherwise stated, all functions are everywhere defined.

All algebras have the same set of operations. So, any
algebra is defined by its carrier. So, it is generally accepted to
identify algebra and its carrier. In particular, the intersection of
two algebras means an algebra, the set of functions of which is
the intersection of the sets of functions of these two algebras.
The intersection of two algebras is an algebra, the union of two
algebras may not be an algebra. But the union of two algebras
generates an algebra containing them (and containing not only

them).
The algebra of countable functions refuses recursions. But

any recursive functions can be generated by any complete
functions. The theory of algorithms is described below from
the point of view of Post algebra.

3. Algorithms

3.1. Arithmetic and Analytic Algorithms

Algorithms are arithmetic and analytic.
The exact definition of algorithms that compute functions

and relations is given in 4.2 (Definition 11). The exact
definition of all other algorithms does not exist by means of
logic language. Conditionally, an algorithm is a program
presented by a programming language.

Arithmetic algorithms are designed to calculate functions
and relations. Relations are sets, and all sets are relations (in
Post algebra). All functions are relations too.

Relations and functions are represented by tables and are
denoted by	�(�
, . . . , ��)	and	�(�
, . . . , ��), where	�	and	�	are
table names,	�
, . . . , ��	are column names.

Arithmetic algorithms are also denoted
by	�(�
, . . . , ��)	and 	�(�
, . . . , ��), where 	�	and	�	are names
of the algorithms,	�� 	are free variable of formulas fulfilled by
algorithms. This designation coincides with the designation of
relations, but it is always clear from the text what is a name of
algorithm and what is a name of relation or function.

Analytic algorithm analyzes arithmetic algorithms, or other
analytic algorithms. This analysis is needed to identify
algorithms which work without stopping, i.e. infinitely long
for calculating some line in table of function or relation. In
particular, analytic algorithm can find that the arithmetic
algorithm works without stopping to find a nonzero result of
the Fermat grate equation.

Analysis of algorithms is performed by compiler and
interpreter of any programming language (compiler or
interpreter analyzing the Fermat equation are not created and
are unlikely to be created). An algorithm is executed only after
a positive analysis, but this does not guarantee that the
algorithm is non-stopping. There are theorems proving that
there are algorithms that work with stopping, but they are not
detected by analysis.

Further, only arithmetic algorithms are considered, but it is
assumed that analysis of these algorithms can preserve
non-stopping.

Next, construction of some classification of relations will
be done. These relations are called sets.

3.2. Sets

Further, sets are one-place relations. But the obtained
results are valid for other sets too. Sets have complements.

Definition 2. A family of sets is called closed if each set of
the family contains a complement of this set.

Classes of sets are next: decidable, almost decidable,
partially decidable, (computably) enumerable, partially
enumerable, and non-computable. Any set belongs to only one
of these classes and is called by name of the class. An analysis

 Pure and Applied Mathematics Journal 2019; 8(1): 1-9 3

of an algorithm, which calculates a set, may not determine
which class contains this set, even though this set belongs to
only one of these classes.

Definition 3. A set is decidable if algorithm calculates
elements of this set in order of increase of element values.

It is impossible to prove by calculations that a set is
decidable, since it can be proved only after infinite number of
calculations. It is possible to prove this by analysis of the
algorithm calculated this set.
Lemma 1. A closure of a decidable set is a decidable set.

Proof. The algorithm computing a decidable set calculates
simultaneously the complement of this set. The elements of
this complement are the numbers, which precede the first
element of the decidable set and which are between two
elements of this set. Therefore, the algorithm calculates the
elements in order of increasing their values. 

Definition 4. A set is almost decidable if an algorithm
calculates elements of this set in order of increasing values of
these elements only after a certain number of elements. We
denote this number by	 .

It is impossible to calculate 	 . For this you need to
calculate all elements. Therefore, m can be determined by
analyzing the algorithm. Knowledge of	 	is necessary only
for calculating the complement of this set. This complement is
a partially decidable set (PDS).

Definition 5. A set is partially decidable if an algorithm
calculates elements of this set with errors, and with corrections
of all of them by finite number of times.

A PDS can be obtained by calculating the complement of
the almost decidable set. A PDS is empty until the first
element of the almost decidable set. Then this PDS contains
all elements preceding the first element. After calculating the
second element, this PDS contains all elements preceding the
second element except the first element. So, this PDS contains
all elements preceding any next element, except for elements
of the almost decidable set. If a next element of almost
decidable has not increasing value, then this element is
removed from the PDS, i.e. this value is erroneous.

A PDS is calculated with errors up to a certain number of
elements of almost decidable set, after which all erroneous
elements of PDS are deleted. This number is	 . Further, all
calculated elements are not erroneous.

Any set is a PDS if it is calculated with errors and their
deleting only up to a certain element. After reaching this
element, all other elements are calculated without errors. So, a
PDS can be calculated independently, without simultaneously
calculating an almost decidable set.

Lemma 2. The closure of an almost decidable set is this set
and its PDS.

Proof. It was shown above that complement of an almost
decidable set is a PDS. It remains to prove that complement of
any PDS is the almost decidable set.

This complement occurs simultaneously with the
calculation of the PDS. The complement is empty until the
first element is calculated. After this, the complement contains
all elements preceding the first element. With each next
element of the PDS, the complement contains all the

preceding elements, except for elements of the PDS. If a next
element of the PDS is erroneous, then it is added to the
complement.

Erroneous elements do not occur after reaching element
with number	 . Further, the complement contains elements
only with increasing values. Therefore, the complement of the
PRM is an almost decidable set. 

Definition 6. The set is (computably) enumerate if the
algorithm calculates its elements without order in values down
to infinity.

An example of an enumerable set is a set of values of a
function that non-monotonically increases up to its variable to
be infinite.

There are partial enumerable sets (PES).
Definition 7. A set is partial enumerable if the algorithm

calculates its elements with errors and then deleting all of
them only by infinitely many times.

A PES can be obtained by calculating the complement of an
enumerable set. This PES is empty until the first element of
the enumerable set. After that, the PES contains all elements
preceding the first element. And the PES contains all elements
presiding any next element of the enumerable set, except for
elements of the enumerable set. If a next value of an element is
not increasing, then this element is removed from the PES, i.e.
this element was erroneous.

Any set is a PES if its calculation creates erroneous
elements but deletes all of them only by infinitely times. This
means that a PCP can be calculated independently, without
simultaneously calculating the enumerable set.

Lemma 3. The closure of an enumerable set is complete.
Proof. The proof repeats the proof of the previous lemma.
It was shown above that a complement of enumerable set is

a PES. It remains to prove that the complement of any PES is
an enumerable set.

The complement is calculated simultaneously with the
calculation of the PES. The complement is empty before
calculating the first element of the PES. After this complement
contains all elements preceding the first element. And this
complement contains all elements preceding the any next
elements except elements of PES. If a next element of the PES
is erroneous, then this element is added to the supplement. In
this case, elements of the complement have increase and
decrease values. So, the complement is indeed enumerable,
without erroneous elements. 

Definition 8. A set is computable if there is an algorithm for
calculating all its elements.

This definition is different from the generally accepted. It is
generally accepted that a set is computable (algorithmically
decidable) if it is decidable. An enumerable set is
algorithmically undecidable, since finding out an element to
belong to the set leads to non-stop calculating, if this element
does not belong to the set. But analysis of the algorithm does
not allow to fulfill the algorithm. And any algorithm must be
analyzed before computing, even this algorithm is decidable.

This definition of computability is not constructive, since
an algorithm is considered computable if it works one hundred
years. In addition, compilers and interpreters do not perform a

4 Maydim Malkov: Algebra of Countably Functions and Theorems of Completeness

complete analysis of algorithms.
Theorem 1. A closure of decidable, almost decidable, and

enumerable sets contains all computable sets.
Proof. All elements of a computable set are calculated in

any sequence of their values, and all erroneous elements are
excluded. In accordance with the lemmas shown above, the
closure of first 5 classes of sets is the same class of sets.

The family of computable sets is countable, since the set of
algorithms is countable. All other sets are non-computable,
and their family is continual, since the family is a family of all
subsets of the natural set.

A similar definition of computability exists for functions.
Definition 9. A function is computable if there is an

algorithm for calculating it.
This definition holds for partial functions too. The

algorithm for calculating these functions must calculate its
domain. Otherwise, the algorithm will be blocked as a result of
analysis.

Functions, like relations, are also decidable, almost
decidable, partially decidable, enumerable, partially
enumerable, and non-computable if they are such relations.
Any function belongs to only one of these classes of functions.

The set of computable functions is countable, the set of
non-computable functions is continual.

4. Logic Algorithms

4.1. Definition

The exact definition of an algorithm is reduced to the
definition of a logic algorithm.

Logic algorithms are built according to the rules of logic.
Each calculated object must have a definition. In logic, the

definition of an object is given by a logic formula, a special
case of which is equality.

Equalities are the simplest definitions of functions. The left
part of equality is a function in the form 	�(�
, . . . , ��) ,
where 	�	 is the name of the function. The right part is an
arithmetic expression.

An example of definition by equality is: 	!"(�
, ��) =
�#$%&'(2, ��), where	!"	is an Ackermann function,	�#$%&' 	is
a fast-growing function, the definition of which already exists.
The variables in the left part of this equality can be replaced by
values, for which the function should be calculated. It is more
correct to represent	�#$%&'(2, ��)	as	�#$%(�
, 2, ��), but it is
generally accepted to use the subscript in definition of	�#$%.

Other definitions of function use logic formulas. For
example,

�#$%)(�
, ��) = �* ⇄ = 0 ∧ �* = �
 + �� ∨

∨ = 1 ∧ �* = �
 ⋅ �� ∨ > 1 ∧ (�� = 0 ∧ �* = 1 ∨ ��= 1 ∧ �* = �
 ∨	∨ �� > 1 ∧	�* 	= �#$%)0
	(�
, �#$%)(�
, �� − 1)))
Simpler example is definition of Fibonacci functions:

�2(�
) = �* ⇄ �
 = 0 ∧ �* = 0 ∨ �
 = 1 ∧

∧ �* = 1 ∨ �
 ≥ 2 ∧ �* = �2(�
 − 1) + �2(�
 − 2)
The relations are defined as

�(�
, . . . , ��) ⇄ logic formula without ⇄

It must be used the lower part of	⇄:

�(�
, . . . , ��) ← logic formula without ⇄

Then the left part of the definition is true if the right part is
true. It is enough to calculate relations and functions.

The upper part in	⇄	means that truth of the left part implies
truth of the right part. This is not applicable for calculations,
since a calculation is possible if truth of the left part follows
from truth of the right side.

4.2. Skolem Formulas

There are several ways to represent any logic formula. But
the Skolem formula eliminates this uncertainty.

The reduction to this formula is carried out in 7 steps:
(1) reduction to the form with negations only of relations;
(2) reduction to the prefix form, in which all quantifiers are

at the beginning of the right part of definition;
(3) deletion of existential quantifiers with replacing their

variables by Skolem functions, the variables of the
universal quantifiers are denoted by	�	with subscript,
the Skolem functions are denoted by	#	with subscript;

(4) deletion of universal quantifiers; their variables are
absent in the left part;

(5) replacing	⇄	with	←;
(6) reduction of the right part to disjunctive normal form;
(7) reduction to several definitions, the right side of which

is a conjunct of disjunctive normal form; this is possible
because a disjunctive normal form is true if any of its
conjuncts are true, i.e. the truth of any conjunct entails
truth of the left part.

Definitions in this form are called rules or clauses. A rule is
represented as

�(�
, . . . , ��) ← �
 ∧. . .∧ �)

where all	�� 	are relations or negations of relations.
Definition 10. Logic algorithm is a set of rules that are a

logic definition of a calculated object in Skolem form.
Now one can give a precise definition of the algorithm.
Definition 11. Algorithm (arithmetic algorithm) is a

program for calculating functions or relations, if the program
can be presented as a logic program.

A program for calculating functions or relations presented
in other programming languages may not be algorithm if this
program calculates an object that does not have a logic
definition. In other cases, a program is algorithm.

4.3. Functions	CDEFG

The definition of	�#$%)(�
, ��)	presented above generates
the next rules.

�#$%*(�
, ��) = �
 + ��

 Pure and Applied Mathematics Journal 2019; 8(1): 1-9 5

�#$%
(�
, ��) = �
 ⋅ ��
�#$%)(�
, 0) = �* 	← 	 > 1 ∧ �* = 1

�#$%)(�
, 1) = �* 	← 	 > 1 ∧ �* = �

�#$%)(�
, ��) = �* 	← 	 > 1 ∧ �� > 1 ∧

∧ �* = �#$%)0
(�
, �#$%)(�
, �� − 1))
These rules are an algorithm. The execution of this

algorithm is given by the rule

�#$%)H (�H
, �H�)
where	 H , �H
, �H�	are concrete values of	 , �
, ��.

Calculations are performed in the next sequence

�#$%)H (�H
, �H�) = �#$%)H 0
(�H
, �#$%)H (�H
, �H� − 1)) =

= �#$%)H 0
H (&H',IJKLMH N'(&H',IJKLMH (&H',&HO0�)))P...P

= �#$%)H 0
(�H
, �#$%)H 0
(�H
, �#$%)H 0
(
�H
, �#$%)H 0
(. . . (�#$%)H 0
(�H
, �H
))))))

Next, 	�#$%)H 0
(�H
, �H
)	with a lower value 	 = H − 1	 is
calculated.

Let the value of	 	be decreased to 3. Then

�#$%Q(�H
, �H
) = �#$%�(�H
, �#$%Q(�H
, �H
 − 1)) =

= �#$%�(�H
, �#$%�(�H
, �#$%Q(�H
, �H
 − 2))) =. . . =

= �#$%�(�H
, �#$%�(�H
, �#$%�(
�H
, �#$%�(. . . (�#$%�(�H
, �H
))))))

If	 = 2, then

�#$%�(�H
, �H
) = �#$%
(�H
, �#$%�(�H
, �H
 − 1)) =

= �#$%
(�H
, �#$%
(�H
, �#$%�(�H
, �H
 − 2))) =. . . =

= �#$%
(�H
, �#$%
(�H
, �#$%
(�H
, �#$%
(
. . . (�#$%
(�H
, �H
)))))) = �H
&H'

I.e.	�#$%�(�H
, �H
) = �
&' . Substituting this result into the
previous expression with 	 = 2 , we get 	�#$%Q(�H
, �H
) =
�H
&H'

RH '
. Further substitutions lead to increase the number of

powers for one.

5. Classification of Functions and

Algebras

In any theory, the classification of its objects is a main
problem.

First, classification of all objects is constructed. This
classification allows to detect of fictitious (useless) objects.
Then more deeper classification is built for only useful
objects.

The objects of algebra of countably-valued functions are

functions and subalgebras of this algebra.
Let’s start with classification of subalgebras. This

classification contains several levels.
The top level contains algebra PN. By definition, it is a

subalgebra too.
The second level contains subalgebras of computable and

non-computable functions. The subalgebra of non-computable
functions is fictitious (useless in PN); therefore, a further
classification is constructed only for subalgebra of
computable functions.

The third level contains the countable set of
subalgebras	S� 	(0 ≤ 2 ≤ ∞), where	2	is the minimal number
of functions generated algebras of the subalgebra. There are
[12] subalgebras not generated by functions (2 = 0) and
subalgebras generated by an infinite set of functions	(2 = ∞).

The subalgebra 	SV	 contains continuum of algebras,
algebras	S� 	with finite	2	contain countable set of algebras.

Below it will be shown that all algebras	S� 	(except	S
) are
fictitious (useless). Therefore, further classification is a
classification of the subalgebra	S
. But this classification is
isomorphic to the classification of computable functions.
Further, classification of functions is built.

The class of computable functions is on the second level of
function classification. The class of non-computable functions
are on the second level too. The class of all functions is on the
top level.

Further, classification is constructed for computable
functions.

The classification of computable functions is isomorphic to
the classification of the subalgebra	S
.

Each function generates some algebra by compositions.
There are much functions that generate the same algebra. This
set is a class of the classification, since any function belongs to
only one class which is generated by these functions.
Therefore, classes do not intersect.

Each class of functions belongs to unique algebra which is
generated by these functions. This algebra belongs to 	S
 ,
since	S
	contains all algebras generated by a single function.
Consequently, the classification of the subalgebra 	S
	 is
isomorphic to the classification of computable functions. So
there is a one-to-one correspondence between these
classifications.

Not all algebras are generated by a single function. There
are algebras generated by only a few functions. These algebras
are fictitious (useless) from the point of view of the
classification of functions (the classification of functions is the
main problem of the algebra of countably-valued functions).

Fictitious objects are deleted in any theory. Therefore,
fictitious algebras are deleted. The study of their properties
and construction of further classification are useless. The set
of algebras contained in fictitious subalgebras is continual
(due to	SV). The set of algebras contained in	S
	is countable.
Therefore, the statement in [12] is erroneous. This statement
says that properties of algebras of multi-valued functions are
significantly different from properties of the algebra of
two-valued functions due to continuity. Fictitious objects are
removed from any theory, so their properties are not

6 Maydim Malkov: Algebra of Countably Functions and Theorems of Completeness

interesting.
Further the classification of functions is continued.
The classification of functions in Post algebras uses a

composition of functions. Therefore, 5 classes of functions:
decidable, almost decidable, partially decidable, enumerable,
and partially enumerable, are not included in this
classification. The function of one of these classes can
generate functions of other classes by compositions, in
particular, by identification of variables.

The third level of classification of functions contains
classes called maximal. The set of maximal classes is
countable. As in algebras of multi-valued functions, these
classes form 3 families (I. G. Rosenberg [13] called 6 families,
but 3 of them are fictitious; in the algebra of two-valued
functions, 2 such families are fictitious [14]). Non-fictitious
families are families of self-dual (auto-dual) functions,
functions that preserve nontrivial equivalence relations, and
functions that preserve central relations.

A deeper classification of functions is difficult because of
infinite sets of classes at almost every level of classification.

All functions in Post algebras are everywhere defined. But a
partial function can have the single way to be continued to an
everywhere defined function. Therefore, the classification of
partial functions coincides with the classification of
everywhere defined functions.

6. Incompleteness Theorems

A function containing 	 #�(�
, ��) , 	 2W(�
, ��)	and 	� +
1	 is represented further by a logic formula
with 	 #�(�
, ��)	 replaced by 	�
 ∨ �� , 	 2W(�
, ��)	by 	�
 ∧��	and	� + 1	by	�. This image of functions is more familiar.

Completeness of theorems in the countably-valued algebra
differs significantly from completeness of these theorems in a
multi-valued algebra.

Theorem 2. In PN the sets	�, �
 ∨ ��	and	�, �
 ∧ ��	do not
generate all functions.

Proof. It is enough to restrict the proof to generating
one-place functions.

The negation 	� = � + 1	 generates one-place functions
without values 0.

The function	�
 ∨ ��	generates only one-place function	�.
Substitutions of the negation into	�
 ∨ ��	and of	�
 ∨ ��	into
the negation generate only one-place function	�.

The function	�
 ∧ ��	generates only one-place function	�.
Substitution 	�
 ∧ ��	 into the negation generates only
one-place function	�. Substitution of the negation into	�
 ∧��	generates only one-place function	�(0) = 0, �(� ≠ 0) = �.

One place functions with several values 0 are not generated. □

Corollary 1. The sets 	�, �
 ∨ ��	 and 	�, �
 ∧ ��	 are not
complete.

Proof. These sets do not generate all functions. 
This is in contrast to multi-valued algebras in which these

sets are complete.
Theorem 3. The Pierce (�
 ∨ ��), Sheffer (�
 ∧ ��) and

diagonal Webb (� + 1	if	�
 = �� = �, 0 if	�
 ≠ ��) functions
are not complete.

Proof. The Pierce and Sheffer functions are not complete,
since negations of 	�
 ∨ ��	 and of 	�
 ∧ ��	 do not contain
values 0. The diagonal Webb function is not complete since
this function generates only one-place functions 	� +
 with	1 ≤ < 2W�%Y. 

7. Slupetski Theorem

7.1. Theorem

The Slupetski theorem holds in PN.
Theorem 4. Let the algebra have countable computable

functions, let the set contain all one-place functions and any
two-place all-valued essential function 	Z . Then this set is
complete.

Proof. J. Slupetski used the Lukasiewicz function	[\. In
modern notation, this function for finite]	is

[\(�
, ��) = ^(S*,*J_,_(�
, ��), (^(S*,
J_,'(�
, ��), (… (
^(S*,a0
J_,bN'(. . .  . . . (^(Sa0
,*JbN',_(�
, ��), (… (^(Sa0
,a0�JbN',bNO(
�
, ��), ^(Sa0
,a0
JbN',bN'(�
, ��)))). . .))). . .   . . .)))))))

where 	^	 and 	S�',�O
Jc',cO 	 are: 	^(0, �) = �, ^(�, 0) =

�, S�',�O
Jc',cO(2
, 2�) = #�',�O ,  �
 ≠ 2
 ∨ �� ≠ 2� →

S�',�O
Jc',cO(�
, ��) = 0 . Constants 	#�',�O 	 are any,

functions 	^	 and 	S�',�O
Jc',cO 	 are generated by 	Z	 and one-place

functions.
Any function	e(�
, ��) = [\(�
, ��)	if	#�',�O = e(2
, 2�).
Function 	[\	 does not exist if] = ∞ . But the new

function	[\	exists:

[\(�
, ��) = ^(Sf(*),g(*)
Jh(_),i(_)(�
, ��), (^(Sf(
),g(
)

Jh('),i(')(�
, ��),

	(. . . (^(Sf(a(aj
)/�),g(a(aj
)/�)
Jh(b(bl')/O),i(b(bl')/O) (�
, ��))). . .))))

where	m	and	�	are the left and right parts of Cantor’s number of

the pair	(2
, 2�)	in	S�',�O
J(�',�O).

Then any function 	e(�
, ��) = [\(�
, ��)	 if 	#f(�),g(�) =
e(m(2), �(2)).

If	�
 ≤ m(]), �� ≤ �(])	then

[\(�
, ��) = ^(Sf(*),g(*)
Jh(_),i(_)(�
, ��), (^(Sf(
),g(
)

Jh('),i(')(�
, ��),

(. . . (^(Sf(a),g(a))
Jh(b),i(b) (�
, ��))). . .))))

since 	^(Sf(�),g(�))
Jh(c),i(c) (�
, ��) = 0	 if 	2 >]	 and 	�
 ≤ m(]), �� ≤

�(]).
If] = ∞	then

[\(�
, ��) = ^(Sf(*),g(*)
Jh(_),i(_)(�
, ��), (

^(Sf(
),g(
)
Jh('),i(')(�
, ��), . . .)))

This formula has infinite number of parenthesis. But the

 Pure and Applied Mathematics Journal 2019; 8(1): 1-9 7

next formula has finite number of them:

[\(�H
, �H�) = ^(Sf(*),g(*)
Jh(_),i(_)(�H
, �H�), (

^(Sf(
),g(
)
Jh('),i(')(�H
, �H�), . . . , ^(Sf(n),g(n)

Jh(o),i(o)(�H
, �H�)))))
where	�H
,	�H�	are concrete values, and	"	is a Cantor’s number

of 	(�H
, �H�) . The formula holds since 	^(Sf(�),g(�))
Jh(c),i(c) (�H
, �H�) =

0	if	2 > ".
Then 	e(�H
, �H�) = [\(�H
, �H�)	 for any

function	e	if	#f(�),g(�) = e(m(2), �(2)).

It is necessary to prove that	^	and	S�',�O
p(�',�O)	are generated by

the function	Z	and one-place functions.

7.2. Function S

I. Slupetsky built this function in]	steps. This does not
apply to] = ∞. Therefore a new construction is given. This
construction is more simple.

The construction starts with	^(0,0). Since the function	Z	is
all-valued, there are 	#
	 and 	#�	 such that 	Z(#
, #�) = 0 .
Then	^(0,0) = Z(#
, #�).

There are 	q
	 and 	q�	 with 	Z(q
, q�) = 1 . Therefore,
	^(0,1) = Z(q
, q�). And so on.

The function	^	has the next definition:

^(�
, ��) = �* ⇄ �
 = 0 ∧

∧ (∃(#
, #�)	Z(#
, #�) = �� ∧ �* = Z(#
, #�)) ∨

∨ �� = 0 ∧ ∃(q
, q�)	Z(q
, q�) = �
 ∧ �* = Z(q
, q�) ∨

∨ �
 ≠ 0 ∧ �� ≠ 0 ∧ �* = Z(�
��)
So	Z	generated	^.
Definition of	^	generates equations

^(0, ��) = ��, ^(�
, 0) = �

where 	�
	 and 	��	are values of 	Z . Only this was used in
previous subsection.

7.3. Function	tuv,uw
Duv,uw

The definition of	S�',�O
Jc',cO 	given by J. Slupetski is applicable

to] = ∞ . But function 	^�	 used in the definition has
definitions non-applicable to] = ∞.

The function

S�',�O
Jc',cO(�
, ��) = �Jc',cO(^�(��'(�
), ��O(��)))

where one-place functions 	�x(0) = y, �x(� ≠ 0) =
0	and	�x(y) = 0, �x(� ≠ y) = 1.

If	^�(0,0) = 0 ∧ ^�(1,1) = 1, then

S�',�O
Jc',cO(2
, 2�) = #�',�O ,

	�
 ≠ 2
 ∨ �� ≠ 2� → S�',�O
Jc',cO(�
, ��) = 0

Indeed,

S�',�O
Jc',cO(2
, 2�) = ZJc',cO z^� {��'(2
), ��O(2�)|} =

= ZJc',cO(^�(0,0)) = ZJc',cO(0) = #�',�O ,
�
 ≠ 2
 ∨ �� ≠ 2� →

→ S�',�O
Jc',cO(�
, ��) = ZJc',cO z^� {��'(�
), ��O(��)|} =

= ZJc',cO(^�(1,1)) = ZJc',cO(1) = 0

7.4. Function S2

The Slupecki definition of 	^�	 is very complex and
non-applicable to] = ∞	The next definition is very simple:

^�(�
, ��) = !Q(Z(!
(�
), !�(��)))
where one-place functions	!
, !�, !Q	are

!
(0) = #
, !
(� ≠ 0) = q
,
!�(0) = #�, !�(� ≠ 0) = q�,

!Q(Z(#
, #�)) = 0, !Q(� ≠ Z(#
, #�)) = 1

and where	∃(#
, #�, q
, q�) Z(#
, #�) ≠ Z(q
, q�)	holds.
The definition of 	^�	 generates all equations used in the
previous subsection:

^�(0,0) = 0, ^�(1,1) = 1

Indeed,

^�(0,0) = !Q {Z~!
(0), !�(0)�| = !Q~Z(#
, #�)� = 0,
^�(1,1) = !Q(Z(!
(1), !�(1))) = !Q(Z(q
, q�)) = 1

7.5. Logic Algorithm

Any definition must not contain dots, except dots for
variable number. The next algorithm does not contain dots:

[\(0, �
, ��) = Sf(*),g(*)
Jh(_),i(_)(�
, ��).

[\(y, �
, ��) = ^([\(y − 1, �
, ��), Sf(x),g(x)
Jh(�),i(�))(�
, ��).

This is a new function	[\:

[\(y, �
, ��) = ^(^(… ^(Sf(*),g(*)
Jh(_)(R',RO),i(_) ,

Sf(
),g(
)
Jh('),i(')(�
, ��), . . . , Sf(x),g(x)

Jh(�),i(�)(�
, ��))))
at	y → ∞.

Any function 	e(�
, ��) = [\(", �
, ��)	 if 	"	 is Cantor
number of	(�
, ��), and if	#f(�),g(�) = e(m(2), �(2)).

The functions	^	and	S�',�O
Jc',cO 	have the next algorithm.

^(�
, Z(#
, #�)) = Z(#
, #�) ^(Z(#Q, #�), ��) = Z(#Q, #�).
S�',�O
Jc',cO(�
, ��) = �Jc',cO(^�(��'(�
), ��O(��))).

8 Maydim Malkov: Algebra of Countably Functions and Theorems of Completeness

�x(0) = y.  �x(� ≠ 0) = 0.
�x(y) = 0.  �x(� ≠ y) = 1.

^�(�
, ��) = �* 	← 	Z(#
, #�) ≠ Z(#Q, #�) ∧

∧ �* = !Q(Z(!
(�
), !�(��)))
!
(0) = #
.   !
(� ≠ 0) = #Q.
!�(0) = #�.   !�(� ≠ 0) = #�.

!Q(Z(#
, #�)) = 0.  !Q(� ≠ Z(#
, #�)) = 1.
The execution of algorithm of 	[\	 is given by the

rule 	[\("H, �H
, �H� , where 	"H, �H
, �H�	 are concrete values
of	", �
, ��. The function	Z	and	e	must be given.

Since	"H, �H
�H�	are any, the Slupetski theorem is proved.

7.6. Completeness at	� = ∞

It is proved that the set of all one-place functions and a
two-place all-valued essential function generates all two-place
functions	e. This set generates all multi-place functions since
some functions of 	e	generate all functions. This holds for
infinite]	 too, since two-place functions generating all

computable functions exist in PN. □

8. Complete Generators

A complete generator is a function generating all
computable functions by compositions.

Theorem 5. Complete generators exist. The set of complete
generators is infinite.

Proof. Two one-place functions 	� + 1	 and 	� −
[√�]�	 generate all computable on-place functions (R.
Robinson theorem [15])2. So a two-valued function generates
all computable functions if the function generates these two
one-place functions.

Let two-place function 	Z	 have 	Z(�, �)) = � − [√�]� .
Let 	Z(Z(�, �), �) = Z(� − [√�]�, �) = � + 1 . And
let 	Z(�
, ��) = 0	 if 	�
 ≠ �� − [√��]� . This
function	Z	generates all computable one-place function.

By analogy, an infinite set of complete generators can be

constructed. □

9. Conclusion

A new theory of algorithms has been built. This theory
refuses recursions but can generate all recursive functions. 6
classes of sets were found - decidable, almost decidable,
partially decidable, enumerable, partially enumerable and
non-computable sets. Any set belongs to only one of these
classes. The family of the first five classes is closed with
respect to the complement operation.

The new mathematically precise definition of a logic
algorithm is given. This algorithm solves problems that cannot
be solved in other algorithms. In particular, the problems of

2In � − [√�]�, � is a real number and [√�] means integer part of √�.

quantifiers of existence and universality are solved.
In the case of universal quantifier, a rule contains variables

in the right part such that the variables absent in the left part.
The right part can contain conjuncts which limit the range of
these absent values. If the right part is true for some value of
one of the absent values, then it is true for all it values of its
range. Therefore, it is sufficient to replace all absent values by
the minimum value of their range. Further, the rules are
executed without absent values and without conjuncts that
limit the range.

Theorems of completeness are found which hold in
algebras of multi-valued functions and not does not hold in
the algebra of countable-valued functions. In particular,
these theorems do not hold for disjunctions and negations,
for conjunctions and negations, for disjunctions,
conjunctions and negations, as well as for the Pierce, Sheffer
and diagonal Webb functions.

A new proof of the Slupetsky theorem, applicable to
countable-valued functions, was constructed.

The theorem of existence of complete generators in PN is
proved. But concrete complete generator was not found.

References

[1] A. I. Mal'cev, Iterative Post algebras (Russian), Novosibirsk,
Novosib. gos. un-t (1976).

[2] S. V. Jablonskij, Functional constructions in k-valued logic
(Russian), Tr. mat. inst. Steklova, 5-142 (1958).

[3] E. L. Post, Two-valued iterative systems of mathematical logic,
Princeton, Princeton Univ. Press (1941).

[4] D. Lau, Functions algebra on finite sets, Berlin, Springer
(2006).

[5] S. S. Marchenkov, On FE-precomplete classes of countably
valued logic (Russian), Discrete math., (2), 51–57 (2016).

[6] A. I. Mal'cev, Iterative algebras ans Post manifold, (Russian),
Algebra and logic, (2), 5-24 (1966).

[7] A. Salomaa, On sequences of functions over an arbitrary
system, Annales Universitatis Turkuensis AI (16), 5–13 (1963).

[8] A. Salomaa, Some analogues of Sheffer functions in
infinite-valued logics, Acta philosophica Fennica, 227-235
(1963).

[9] G. P. Gavrilov, On functional completeness in countably valued
logic, Problems of cybernetics, 5–64 (1965).

[10] G. P. Gavrilov, Precomplete classes of parcially countably
value logic contained all functions of a single variable
(Russian), Discrete analysis methods in graph theory and
logical functions, 12–24 (1976).

[11] S. S. Marchenkov, On set power of precomplete classes in some
classes of countably valued logic functions (Russian),
Problems of cybernetics, 109–1981 (2015).

[12] Ju. I. Janov, A. A. Muchnik, On existence of k-valued closed
classes without finite basis (Russian), Dokl. Acad. Nauk SSSR,
(1), 44–46 (1959).

 Pure and Applied Mathematics Journal 2019; 8(1): 1-9 9

[13] IG Rosenberg, Über die functionale Vollständigkeit dem
mehrvertigen Logiken von mehreren Verändlichen auf
endlichen Mengen, Rozpravy Cs. Academie Ved, Ser. Math. Nat.
Sci., 3-93 (1970).

[14] M. A. Malkov, Classification of Boolean functions and their
closed sets, SOP transactions on applied mathematics, (1),
1-20 (2014).

[15] R. M. Robinson, Primitive recursive functions, Bull. Amer.
Math. Soc., bf53, 925-942 (1947).

