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Abstract: The division by zero has been a challenge over years, which is in two forms: one involves a non-zero numerator 

while the other involves a zero numerator. This work deals with the second form of division, with the aim of finding a solution 

to the equation obtained when the expression is equated to, say x, where x is not a quantity but the ‘number of times of one 

whole’. In this work, zero divided by itself has been exhausted using different approaches and methods to come to a 

conclusion; that this division has a unique solution, 1. Some of the methods employed include geometric series, logarithm, 

indices, reciprocals, factorials, self-operations, Euler’s number, binomial expansions, graphical method among others. The 

conclusion has been made that zero divided by zero is 1. The reverse of division by multiplication is not applicable because 

zero has been associated with two ‘abnormal’ properties or behaviour that’s not with other numbers. 

Keywords: Times of One Whole, Self-Operations, Shifting Method 

 

1. Introduction 

This work is an attempt to solve the division of zero by 

itself (0 / 0). It is an attempt to prove that there is a unique 

solution to the equation 0/ 0 = x. The work also aims to spark 

a discussion among scholars, awakening the thoughts of 

many and leading to re-examining of the expression. The 

work has used different approaches to find what x could be 

(the number of times of one whole that zero can go into itself 

hence x isn’t a quantity). 

One of the things that should be known and must be 

accepted is that zero has unique properties and this makes it 

not follow the already laid procedures and rules in fields and 

rings in totality. In all situations, there are exceptions and 

zero is one of them. However, this does not qualify it to be an 

exception in all cases. 

2. Previous Research and Findings 

Looking at the paper by Dodge, there is what can be term 

as “generalization of values of ‘a’.” [1] Starting with the 

rules laid; 

a + 0 = a ………(i) a.1 = a ……….(ii) and 
�
�  + 

�
�  = 

�����
��  ……..(iii), there’s need to know that if a = 0, then the 

denominator is also ‘a’. What follows in that work is 
�
� + 

�
� = 

�.���.�
�.�  = 

���
�  = 

�
�. This is erroneous when a = 0 and in fact, 

there’s nothing being solved in Clayton’s work. There’s need 

to be clear on what is being solved in that case. 

The work developed here is not involving with generalized 

values of ‘a’ but with a = 0. If in that case Clayton had ‘a’ 

specifically as 0, the results would have been different as is 

going to be shown with the proves provided. If a ≠ 0, then the 

already known and concluded results hold and remain 

undisputed. Instead of what has been done, there would have �
� + 

�
� = 

�.���.�
�.�  = 

���
�  = 

	�
�  = x + 

�
�, where a = 0. Alternatively, 

there can have; �
� + 

�
� = 

�.���.�
�.�  = 

���
�  = 

	.�
�  = x + 

�
�. The x + 

�
� must ever be 

there as it involves equating the 
�
� = 

�
� to x first. 

According to Martin Ohm’s proof of 1828, in the paper by 

Cajori, the conclusion is that division by zero is impossible. 

[2] What is to be pointed out here is that there’s need to state 

clearly what is meant by “division by zero”. In reality, the 

scenario that is impossible to divide by zero is when the 

numerator is all the other values except 0. The other values 

apart from zero would yield large quantities that are out of 
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integers: one case being 
�
� = ∞ (Wallis, 1665, in the paper 

authored by Boyer). [3] In the same paper, there is Bhaskara 

who had noticed that 
�
�  has unusual properties. This is 

translated to what this paper has concluded as zero having 

anomalous properties. Had it not been zero with these 

properties, then there would have been obtained a clearly 

defined answer as other numbers do when they take the 

position of the denominator, in the above expression. But this 

work/paper can boldly and categorically state that the 

unusual behaviour changes when it meets a numerator of its 

equal, another zero. It’s like saying that, if there lives a mad 

person in a market, that does not mean that such a person 

cannot be at peace with anybody in this world or in the same 

market. Zero has this behaviour of an insane person but can 

be in terms with ‘something’. 

In 1971, Duncan outlined 10 division facts as 
�
�, 

�
�, 

	
�, …, 

�
�. 

[4] It would be suggested that 
�
�  be removed from this 

category. All the other divisions in this list fall in the same 

group of ‘undefined’ while the first one is not a member. The 

greatest mistake in the attempt to solve the first one, 
�
�, is to 

think division as a sequence of subtraction for all scenarios. 

In practice, what would one say if told to divide a positive 

number by a negative number or the other way round? Would 

one still use the analogy of repeated subtractions as division? 

I.e. If there’s 

�
	 , would one consider a sequence of 

subtraction? (So there would be -6 -2 = -8, -8 -2 = -10, -10 -2 

= -12, etc., which is still a sequence of subtraction?) Or 

would one say that when there’s 
�

	 it should be demonstrated 

by saying that one has 6 oranges and want to divide them 

among -2 children? Or would it be said 6 – (-2) =8, 8 – (-2) 

=10, 10 – (-2) =12 etc., which demonstrates the misinformed 

conception in mind? What is meant is that there is a 

misconception in mind of thinking that one can always 

equate division to a repeated subtraction. This is not the case 

in all situations. Rather, the work has a new way of 

expressing it to ensure it fits all situations. This paper is of 

view that, whenever there’s a division, one should always ask 

themselves, “How many times of one whole can the 

denominator go into or fit into the numerator”? This question 

is valid for all occasions such as division by positive and 

negative numbers, zeros, fractions and even complex 

numbers. It is valid for any situation, be it of humans, 

animals, objects and so on. For example, if there is 
�
	 = 3, one 

is only asking themselves the number of times of the whole 

the 2 (denominator) can go into 6 (numerator), which is 3 

times of the one whole. In other words, if there are 6 oranges 

to be divided into 2, each would take 3 oranges. Here, 3 

refers to number of times of a full orange (one whole in the 

question above). Extending this concept and reasoning to 

divisions involving zeros makes more sense than repeated 

subtractions. 

Again in Duncan’s paper, there has been asked to regard 

division as the inverse of multiplication. All that this paper is 

stressing on is that this is not applicable as long as zero has 

the unique properties of creating confusion whenever one 

wants to reverse the process involving its division, which 

does not mean that one cannot attempt to explore the case of �
�. The paper has concluded that 

�
� = c has too many solutions 

when one tries to reverse the division with multiplication. 

One only needs to explore it with wit, greater insight and 

keenness; such that, whenever one finds themselves in a 

dilemma when solving anything like 
�
� = x, they can find a 

different route to escape through, instead of saying, “Thou 

cannot divide by zero, it’s unmathematical”, simply because 

somebody somewhere said it. 

The misconception of repeated subtractions by Hilda F. 

Duncan is repeated by Hornsby Jr. & Cole. In their paper is 

the demonstration of division using 
�
� and 

�
�. In the first case, 

�
� 

= 0 is of no doubt. However, in the second case, they have 

concluded that, “… regardless of what number is used for the 

quotient in the second division, the remainder is always 4. 

The division simply cannot be done.” [5] This is 

misinforming due to the idea of taking division as a series of 

subtraction. If one talks about remainder, then they must first 

clarify what they subtracted to remain with the remainder and 

why it is a remainder. Does it mean it is a remainder because 

it is now less than the denominator? If the question in this 

paper is applied in such a scenario, it would make more sense 

and would not lead one into talking of ‘remainder is always 

4.’ This is similar to what Hilda F. Duncan’s work is saying 

when it is written, “…. we can reach into the basket that will 

suffice for us to empty it.” (Duncan, 1971). 

Henry B. confirms that as long as the denominator in a 

division of zero is non-zero, then the results are ever zero. 

But on the other hand, that work dismisses the possibility of 

x = 1 when 
�
� = x. This is because of the fact that whenever 

one attempts to reverse the process, any real number will be a 

solution. [6] The property of “absorbing all” and “factoring 

all” is what is causing all this confusion. One should not 

bother trying to reverse the division involving zero. So the 

paper concludes that “…all numbers are correct answers for �
� ……This is why we say that the division by zero is 

impossible”. This work reiterates that the division that can be 

termed as impossible is that which involves a non-zero 

numerator and a zero denominator. The author who leaves 

the field for research open is Sunder Viji in the 1990 paper. In 

the case 1 where there is a non-zero numerator divided by 

zero denominator, the work concludes that case by saying 

that 
�
�  is not defined for a ≠ 0. As long as the article has 

excluded 0 for possible values of ‘a’, then this can mean that 

the case when a = 0 is special and can be given a different 

approach. In case 2, involving both numerator and 

denominator as zeros, Sunder entangles himself when there’s 

an attempt to reverse of division through multiplication 

possible. The paper ends up concluding that 
�
�  is 

indeterminate. There’s another conclusion made on division 

as successive subtraction in condensed form. The paper also 

points out that “zero represents the counting number for the 

number of elements in the empty set.” [7] It should be noted 

that this is just but one way of understanding what zero 

means. 

Lichtenberg in 1972 concluded that one should not use 
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zero as a divisor simply because one needs to avoid 

inconsistencies; though for zero as numerator and non-zero 

as denominator, then the answer is ever zero. That paper has 

pointed out that for one to classify zero as an even number by 

definition, one doesn’t need special considerations at all, 

which is true as one cannot have a remainder when they 

divide zero by 2. [8] 0
w 

= 0 as long as w ≠ 0 while 
�
� = 0 as 

long as f ≠ 0, by Allinger in 1980 paper. The paper has 

demonstrated with few examples on how an attempt to divide 

zero by itself can lead to erroneous conclusions that are 

contradictory.[9] Later, this work will show that actually, 0
0 
= �

� and that the interest is to focus on such divisions. Let it be 

understood that, what Allinger has done in the examples is 

misleading and not meant to solve the task at hand. In the 

first example, there is misleading concept in proving that 0 = 

x = 1. One should know that, if one wants to replace x in any 

way, then they should replace all of them. Furthermore, there 

are many paths to follow in such an equation. There is only 

replacing of some x’s and leaving others still un-replaced. 

One must decide whether to replace all or none. 

If one starts with x = 0, x(x-1) = 0(x-1), one way to find x 

is to divide both sides by common term (x-1), to get x = 0, 

which is true since that is the definition of x from the 

beginning. The other way is to replace all x’s with zero and 

get 0 = 0, which is true as there is no contradiction. The other 

way is to say x(x-1) = 0 ⟹ x	2 
– x = 0 ⟹ x	2 = x ⟹ x = 1. 

This is true since one can replace x with 1 in both sides and 

have no contradiction. What is being pointed out here is that 

poor replacement has led to poor conclusion. In the second 

example from Allinger, there’s a = b but both are non-zero. 

At the point of a = b + a, one can have a different path from 

that of Allinger. One can have a = b + a ⟹ a = a + a ⟹ a = 

0. Although a and b have been termed as non-zero, this is 

also a solution to the equation. There can still be ab – a
2
 = b

2
 

– a
2
 ⟹ a

2 
- a

2 
= 0 or b

2 
- b

2 
= 0, since a = b. One can also 

have ab – b
2 
= a

2 
- b

2 ⟹ b(a-b) = (a-b)(a+b) ⟹ b = (a+b) ⟹ 

b = 2b ⟹ b = 0. Or ab – b
2 
= a

2 
- b

2
 ⟹ b

2 
- b

2 
= b

2 
- b

2
 or a

2 
- 

a
2 

= a
2 

- a
2 

or b
2 

- b
2 

= a
2 

- a
2 

and since a = b, (which shows 

that a or b can be any number), there is no contradiction at 

all. This is true irrespective of the value of a and b. The 

problem of contradiction is arising due to the constraint set 

by Allinger as if when the two are zeros, there would be no 

balancing of the equations. Another possible cause of 

contradiction can be that of taking the wrong path; maybe 

instead of dividing, one should think of adding and 

subtracting as a way of collecting like terms together. 

Ball, in 1990 work, talked about divisions involving zeros 

though it is a research where participants are tested on their 

understanding on such divisions.
 
[10] So, the has not solved 

the question at hand but participants have given their stand 

on the same. Carnahan, 1926, only mentioned that, “In 

algebra the student is taught to avoid division by zero. At 

once he raises the question, "Why?" For one thing, division 

by zero leads to that absurdity known as the fallacy.” 

Therefore, the conclusion is that there is absurdity in such 

divisions though the paper has concluded about all divisions 

involving zero, which should be avoided.
 
[11]

 
Amar Sadi 

published research work in 2007 in the bid to identify and 

review the misconceptions most common among students in 

both primary and secondary schools. In the work, the closest 

it has come to the task involving zero is when it indicates that 

there was identification of one of the mistakes made by 

students as the failure to realize and understand that any 

number multiplied by zero is zero. [12]
 
It has not made any 

attempt involving zeros in division. The paper Sampler: 

Division Involving Zero by Heid Kathleen and others, has 

worked with all divisions involving zero (
�
�, 

�
�, 

�
� ) where n is 

non-zero. For 
�
�  = x, n has been replaced by 2 and the 

conclusion is x = 0 because 2x = 0 yields a unique solution. 

For 
�
� = x, n is replaced by 2 and the conclusion is that, it’s 

undefined since no real number x is a solution to 0x = 2. For �
�  = x, the conclusion is that it is indeterminate since any 

value of x can satisfy 0x = 0. [13] Therefore, the first two 

divisions will never bring doubts but as per the third division, 

one cannot verify the answer through reverse process because 

zero has some unique traits. 

In June 2016, Matsuura and Saitoh published their paper in 

which 
�
� = 0 for any complex number b. In the end there’s the 

conclusion that 
�
� = 0 where z=0 in the division by zero, 

�
� = 0, 

in the complex analysis field. Note that they have introduced 

the new space idea for the point at infinity where the point at 

infinity has been represented by the number z=0. [14] Pavo 

and Ilija have a very beautiful work in 0/0, published in 

2016, April. In their paper, they have indicated that it’s either 

to be accepted that 0/0 is possible, allowed and defined or 

Einstein’s theory of special relativity be abandoned. The 

Einstein’s theory of special relativity shows that 
�
� = 1. Here, 

the Einstein’s equation of relativistic energy-momentum 

relation takes relative velocity v to be 0. The same special 

relativity equation is still used when stationary observer’s 

time is the same as that of moving observer to prove that 
��
�� = 

+1. They have concluded that new problems are created in 

the process of solving the division of zero by itself. [15]
 
It 

should be noted that the authors have only relied on the 

special theory of relativity of Einstein and no any other effort 

put to support the solution. A lot is needed to fully support 

the division to make sure that ‘mist’ in the mind is cleared 

beyond any reasonable doubts. Since they have concluded 

that more problems are created in the process of dividing, 

then it can be concluded that they have not understood what 

they were doing. There is need to provide substantial 

evidence rather than just rely on what someone else has 

termed as ‘special case’. 

2.1. Conclusion from Previous Research 

The research done so far shows that previous attempts and 

mathematicians have concluded the solution as all 

numbers/any real number: 0, 1, 3, …. With most scholars and 

Mathematicians, the challenge comes in when they 

want/attempt to reverse the division, i.e. 

 
�
� = �…                                   (1) 



23 Wangui Patrick Mwangi:  Mathematics Journal: Division of Zero by Itself - Division of Zero by Itself Has Unique Solution  

 

and 

 
�
� = 0…                                   (2) 

where the numerator is divided by the solution, x, to obtain 

the denominator, equation (2), because division is the reverse 

of multiplication. In this case, scholars ask, “What is the 

value of x that satisfies the equation (2)?” Here, any value of 

x can fulfil the condition hence any real number is 

acceptable. E.g. 
�
� = 0, 

�

	 = 0 , 

�
�.� = 0 , etc. Based on this 

information, they are able to conclude that, the equation is 

indeterminate because any real number can satisfy the 

reverse equation. 

2.2. Questions and Concerns from Previous Research 

Does it therefore mean that the equation 
�
� = �, (1), has no 

solution? Or could the equation be ambiguous? How can one 

equation have so many solutions? Is there another way? 

Could there be a unique solution or forever it should be 

concluded that the answer is indeterminate? Or maybe there 

is something one is not getting right? Is there still need to 

revisit the expression 
�
� and give it a new meaning? There’s 

the need and urge to redefine the equation (1). It is important 

to give it a new approach and it is high time to actually find 

the value of x. But basically, it’s agreed that zero is a number 

in mathematics and in the set of integers as an even number, 

(Lichtenberg, 1972). From the brief explanation of the 

previous attempts, one needs to comprehend a few things 

about the number being dealt with (zero). So, note these 

points: 

(i) It is only zero that can “absorb” any number, e.g. 0*5= 

0, 0*(-8) =0, 0*0= 0 etc. This is seen in multiplication 

where zero remains unchanged even after multiplying 

with very large and very small, both positive and 

negative numbers. 

(ii) It’s only zero that “contains” all the real numbers as its 

factors; any real number can be “factored out” of zero, 

e.g. 0= 0*5, 0= 0*(-10), 0= 0*(1.3) etc. 

NB: These two facts generally show that any number can 

be absorbed into zero and consequently, any number can be 

factored out from zero. These anomalous characteristics of 

zero make it difficult and ‘tricky’ in any attempt to divide 

zero by itself (equation 1) and to satisfy the reverse equation 

(equation 2); and in turn, making it not obey the fields and 

rings properties like other numbers. This is a signal that one 

should be ‘careful’ in the approach to carry out the division. 

One should be sure that any attempt to reverse the division 

will never work due to the above properties. 

Now, since the issues of all real numbers being applicable 

arise when trying to solve the reverse equation, and one can 

see that it is not possible to reverse any process with zero due 

to its unique properties, then it cannot be said that in reality 

all real numbers are solutions. It is an illusion that is created 

by the unusual properties. This behaviour can be likened to 

the real life which is irreversible; one cannot ‘go back in 

time’ or one cannot reverse life and live, say yesterday or last 

year, again. The only solutions that can be argued for, in 

equation (1) are 0, 1 and ∞. Therefore, the methods used in 

approaching equation (1), in this work, are all consistent with 

only one solution among the three solutions. It is also good to 

note that, the idea of taking zero as the numerator and the 

denominator as a number or the numerator as a number and 

denominator as a zero (Heid & et al, 2013) does not make a 

lot of sense. As long as zero is a number, then one is dividing 

a number by itself or a number by a number. One should not 

strive in creating confusion, and at this age, there should be 

no talking of different solutions to a single equation that is 

non-ambiguous. 

3. Proofs 

The simple knowledge employed in these methods is 

borrowed from calculus, linear algebra, real analysis and 

other areas in mathematics. In any case where doubts arise, 

limits are employed to ‘clear the fog of doubts’ and ‘pave 

way for belief’. 

(i) The addition method 

When working with the expression 
�
�  it should be 

converted first it into an equation given by 
�
� = � where x is 

to be determined. Start by adding a positive number on both 

sides such as 1 to have 

 
�
�+ 1 = � + 1…                          (3) 

Equation (3) ⇒ 
���(�)
�(�) = � + 1. Taking the denominator to 

the right hand side, it becomes, 0 + 1(0) = (x + 1)0 ⇒ 0(1) + 

1(0) = (x + 1)0 ⇒ 0(1 +1) = (x + 1)0 i.e. 0(1 +1) = 0(x + 1). 

Hence (1 + 1) = x + 1 by left cancellation rule in 

multiplication. Therefore, x+ 1 = 1+ 1, x = 1. Adding any 

other number, say (-5), the result is: 
�
�+ (−5) = � + (−5) ⇒

��(
 )�
�(�) = � + (−5) ⇒ 0+ (-5)0 = 0(x+ (-5)) ⇒ 0(1) + 0(-5) = 

0[x+ (-5)] ⇒ 0(1+ (-5)) = 0(x+ (-5)) ⇒ 1+ (-5) = x+ (-5) 

hence x = 1. NB: One can as well let 
�
�	be 

!
! i.e. y = 0 in such 

a case. Also, the method can be referred to as the 

addition/subtraction method because any both positive and 

negative number can work. 

(ii) The logarithm method 

Suppose that 
�
� = �, and let y = 0 hence one can say, 

 
"
" = #

# = x…                              (4) 

Introducing logarithm on both sides gives log (
!
!) = log(x) 

⇒ log y – log y = log x ⇒ 0 = log x ⇒ x = 10
0
 =1. Using the 

method of logarithm, One can see that 
�
� = 1. If there is doubt 

in this, it will be proved later that log y – log y = 0 for y = 0 

using limits. 

(iii) Matrices method 

This method is based on argument and not really showing 

what 
�
�  is. Consider the following 2*2 matrix that has an 
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inverse and hence a determinant that is non-zero. A = 

$1 23 4( , determinant (det) = 4 – 6 = -2. Inverse, A
-1

 = 

�

	 $ 4 −2−3 1 ( and it’s known that A

-1
 *A = I where I is the 

identity matrix. Therefore, one gets, 
�

	 $ 4 −2−3 1 ( $1 23 4( = 

�

	  $−2 00 −2(  = $1 00 1(  = I. It’s good to note that 

�

	 

$−2 00 −2(  is the matrix that yields the identity matrix I. 

�
❷ *❷ 00 ❷+  matrix has det = (-2) which is seen as the 

denominator of the value outside the matrix and also along 

the main diagonal of that matrix. One can have the same 

matrix as follows: 
�

	  $−2 00 −2(  = 

�
�,-  $./0 00 ./0(  = 

1−2/−2 00 −2/−23 = 1./0/./0 00 ./0/./03 = $1 00 1(. This 

pattern is true for all matrices. Notice that, the determinant 

outside the matrix does not affect any other element inside 

the matrix save the elements along the main diagonal, which 

are reduced to units. Consider a 3*3 matrix below: 

B = 44 2 32 4 51 3 66 , and find its inverse. The method of 

finding cofactors by finding the determinant of each 

submatrix below is applied: 

(-1)
2
 7�  � �8, (-1)

3
 7	  � �8, (-1)

4
 7	 �� �8, (-1)

3
 7	 �� �8, (-1)

4
 7� �� �8, 

(-1)
5
 7� 	� �8, (-1)

4
 7	 ��  8, (-1)

5
 7� �	  8, (-1)

6
 7� 		 �8 

Cofactor = 4 9 −7 2−3 21 −10−2 −14 12 6, det(B) = 4(9)+ 2(-7)+ 3(2) 

= 28. Adjoint = (Cofactor)
T 

= 4 9 −3 −2−7 21 −142 −10 12 6 
B

-1
 = 

�
�,- (Adjoint) = 

�
	; <

9 −3 −2−7 21 −142 −10 12 =, but B
-1

*B = I 

= 
�
	;  4 9 −3 −2−7 21 −142 −10 12 6  44 2 32 4 51 3 66  = 

�
	;  428 0 00 28 00 0 286  = 

41 0 00 1 00 0 16. Notice that for any 3*3 matrix, the pattern is still 

maintained: 
�
	;  428 0 00 28 00 0 286  = 

�
�,-  4./0 0 00 ./0 00 0 ./06  = 

4./0/./0 0 00 ./0/./0 00 0 ./0/./06  = 41 0 00 1 00 0 16 = ?.  See 

again that the determinant outside the matrix will only affect 

the main diagonal’s elements and reduces them to unit. All 

the other elements off the main diagonal remain as zeros and 

will never be affected by the determinant. For all identity 

matrices, the principle applies. One should have also noticed 

that the determinants hasn’t been allowed to be multiplied by 

any element in the matrices from the beginning. I.e. in A
-1

 

and B
-1

, the determinants have been retained outside the 

matrices irrespective of the size and nature of these 

determinants in each case. 

Now turn into matrices without inverses, i.e. matrices 

whose det = 0. 

Consider matrix C given by C = $2 41 2(, det = 4(1) – 2(2) 

= 0, C
-1

 = 
�
� $ 2 −4−1 2 (. 

But C
-1

 * C = 
�
�  $ 2 −4−1 2 (  $2 41 2(  = 

�
�  $0 00 0( . 

Remember that, the general rule for 2*2 identity matrices is 

�
�,- $./0 00 ./0( = 1./0/./0 00 ./0/./03 = $1 00 1( = I… (5) 

Therefore, 

�
�  $0 00 0(  = 

�
�,-  $./0 00 ./0(  = 1./0/./0 00 ./0/./03  = 

10/0 00 0/03 and this should be equal to 

Identity I = $1 00 1( . So the argument can only be that 

10/0 00 0/03 = $1 00 1( implying that 
�
� = 1. 

Now consider a 3*3 matrix given by: D = @1 2 32 4 81 2 6A and 

cofactors are given below. One want to apply the method of 

finding cofactors by finding the determinant of each 

submatrix below: 

(-1)
2
 7� ;	 �8, (-1)

3
 7	 ;� �8, (-1)

4
 7	 �� 	8, (-1)

3
 7	 �	 �8, (-1)

4
 7� �� �8, (-1)

5
 7� 	� 	8, (-1)

4
 7	 �� ;8, (-1)

5
 7� �	 ;8, (-1)

6
 7� 		 �8 

Cofactor Adjoint 

@ 8 −4 0−6 3 04 −2 0A, @
8 −6 4−4 3 −20 0 0 A, det = 1(8) – 2(4) + 3(0) 

= 0. D
-1

 = 
�
�,-  (Adjoint) = 

�
�  @ 8 −6 4−4 3 −20 0 0 A , D

-1
 *D = 

�
� @

8 −6 4−4 3 −20 0 0 A  @1 2 32 4 81 2 6A  = 
�
� 	4

0 0 00 0 00 0 06 . But the 

general rule for a 3*3 identity matrix is 

�
�,-  4./0 0 00 ./0 00 0 ./06  = 4./0/./0 0 00 ./0/./0 00 0 ./0/./06 

= 41 0 00 1 00 0 16 = ? hence 
�
� 	4

0 0 00 0 00 0 06= 
�
�,- 4

./0 0 00 ./0 00 0 ./06 
= 4./0/./0 0 00 ./0/./0 00 0 ./0/./06  = 40/0 0 00 0/0 00 0 0/06  and 

so the matrix 40/0 0 00 0/0 00 0 0/06  should be equal to 

41 0 00 1 00 0 16 and therefore conclude that 40/0 0 00 0/0 00 0 0/06 = 

41 0 00 1 00 0 16 and hence 
�
� = 1. This is the argument being tried 

be to put across using the knowledge of matrices. 
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Matrices with a single element X 

For any 1*1 matrix B�C, det = x and 
�
� = 

�
�,- is the inverse of 

the matrix. I.e., for any matrix B�C, one has identity matrix, I 

= 
�
�,- B�C = 

�
� B�C = D��E = B1C. Consider x = 1, i.e. B1C, det = 1, 

inverse = D��E = 
�
�,-. Then, identity matrix, I = 

�
�,- B1C = 

�
� B1C = 

D��E = B1C. For x = 2, there’s matrix, B2C, det = 2, inverse = D�	E 
= 

�
�,-. Identity matrix, I = 

�
�,- B2C = 

�
	 B2C = D		E = B1C. For x = 

10, there’s matrix, B10C , det = 10 , inverse = D ���E  = 
�
�,- . 

Identity matrix, I = 
�
�,- B10C = 

�
�� B10C = D����E = B1C. For x = 

�
�, 

there’s matrix, D��E , det = 
�
� , inverse = D �

�/�E  = B4C  = 
�
�,- . 

Identity matrix, I = 
�
�,- D��E = 

�
�/� B1/4C = D��E = B1C. For x = 


�
F , 

there’s matrix, D
�F E, det = 

�
F , inverse = G �HIJ K = B−7C = 

�
�,- . 

Identity matrix, I = 
�
�,- D
�F E = 

�HIJ  D
�F E = D
F
FE = B1C. For x = -5, 

there’s matrix, B−5C, det = −5, inverse = D �
 E = 
�
�,-. Identity 

matrix, I = 
�
�,- B−5C = 

�

  B−5C = D
 
 E = B1C. 

Similarly, for x = 0, 

Matrix B0C, det = 0, inverse = D��E = 
�
�,-. Identity matrix, I = 

�
�,-  B0C  = 

�
�  B0C  = D��E  and this should be equal to B1C . 

Therefore, one can use the patterns displayed by the other 

matrices to conclude that D��E = B1C and therefore 
�
� = 1. 

This argument, based on non-invertible matrices, shows 

that if one has 
�
�, then, the solution is 1. It uses the pattern 

shown in all n*n matrices that are invertible to extend the 

same to all n*n singular matrices. 

(iv) The reciprocal method 

Consider 
�
� = x. Find the reciprocal on both sides of the 

equation to obtain, 
�
�/� = 

�
� i.e. $��( 

-1
= x

-1
. Then one gets 

 
�
�/� = 

�∗�
�  = 

�
� = 

�
� ⇒ 

�
� = x

-1
 …                   (6) 

This implies that, one had a fraction 
�
� and after finding the 

reciprocal, one still gets that fraction 
�
�. So, since 

�
� = x (from 

original equation above), and 
�
�  = x

-1 
(from the reciprocal 

above), then one has 

�
� = x = x

-1 
= $��( 

-1
. I.e. x = x

-1 
 ⇒ x = 

�
�  ⇒ x

2 
= 1  ⇒ (x

2
)

 1/2 
= 

1
1/2 ⇒ ±x =±1. 

Since ±x = ±1, then x = 1 and hence 
�
� = 1. It’s only the 

fraction 
�
�  that behaves like this such that, its inverse and 

original fraction are equal. I.e.(
�
�) = (

�
�) = 1. NB: It is the 

fractions that are equal and not that 0=1. So far, the method 

proves that 
�
� = 1 but one might want to test if 

�
� = 0. Then, if 

one finds the reciprocal on both sides, it comes to 
�
� = 

�
� and 

from the original equation, there was 
�
� = 0 hence 

�
� = 0 = 

�
�, 

which is a contradiction because 0 ≠ 
�
�. Therefore, 

�
� ≠ 0. NB: 

�
� tends to ∞ and hence 0 ≠ ∞. Suppose that 

�
� = ∞. Then, if 

one finds the reciprocal on both sides, it comes to 
�
� = 

�
N, but 

from the original equation, there was 
�
� = ∞ hence 

�
� = ∞ = 

�
N, 

which is a contradiction because ∞ ≠ 
�
N. NB: 

�
N tends to 0 

and hence ∞ ≠ 0. Notice that, for both cases of 0 and ∞, they 

are one and the same thing as they show the same results that 

0 ≠  ∞ and ∞ ≠  0. Limits can be applied to clear doubts 

where they arise. Therefore, it is only 1 that qualifies as a 

solution to the equation 
�
� . So, one has some boldness in 

concluding that (
�
�) = (

�
�) = 1. 

(v) The power method 

(a) Powers greater than 1. 

Let 
�
� = x. Square both sides to get $��( 

2 
= x

2 ⇒ 0
2
/0

2 
= x

2
 

⇒ �
� = x

2
. But from the original equation, 

�
� = x hence 

�
� = x = 

x
2 ⇒ x = x

2 ⇒ 1 = x. Therefore, x = 1. Let 
�
� = x. Cube both 

sides to get $��(3 
= x

3 ⇒  0
3
/0

3 
= x

3
 ⇒ �

� = x
3
. But from the 

original equation, 
�
� = x hence 

�
� = x = x

3 ⇒ x = x
3 

 ⇒ 1 = x
2
. 

Therefore, (x
2
)

 1/2 
= 1

1/2 ⇒ ±x = ±1 ⇒ x = 1. Let 
�
� = x. To 

power 4 on both sides to get $��(4 
= x

4 ⇒ 0
4
/0

4 
= x

4
 ⇒ �

� = x
4
. 

But from the original equation, 
�
� = x hence 

�
� = x = x

4
 ⇒ x = 

x
4 ⇒ 1 = x

3
. Therefore, (x

3
)

 1/3 
= 1

1/3
 ⇒ x = 1 hence x = 1. Let �

� = x. To power 5 on both sides to get $��(5 
= x

5 ⇒ 0
5
/0

5 
= x

5
 

⇒ �
� = x

5
. But from the original equation, 

�
� = x hence 

�
� = x = 

x
5
 ⇒ x = x

5 
 ⇒ 1 = x

4
. Therefore, (x

4
)

 1/4 
= 1

1/4 ⇒ ±x = ±1 ⇒ x 

= 1. Let 
�
� = x. To power 6 on both sides to get $��(6 

= x
6 ⇒ 

0
6
/0

6 
= x

6
 ⇒ �

� = x
6
. But from the original equation, 

�
�  = x 

hence 
�
� = x = x

6 ⇒ x = x
6 ⇒ 1 = x

5
. Therefore, (x

5
)

 1/5 
= 1

1/5 ⇒ 

x = 1 hence x = 1. Note that, if one has 

(x
n
)

 1/n 
= 1

1/n
 …                            (7) 

then it comes to x = 1 whether n is odd or even. Both cases 

agree that x = 1 because x = -1 does not satisfy anything. For �
� = x, one is looking for a fractional number whose powers 

do not bring any change to the fractional number itself (no 

altering of the original fractional number by the powers it is 

raised to). Notice that, it is only 
�
� = 1 that will never change 

no matter the number of its power, i.e..(
�
�) = (

�
�) = 1. The 

conclusion is that 
�
� = 1. 

(b) Powers between 0 and 1 

Let 
�
� = x. Find square-root on both sides to get $��(1/2 

= x
1/2

 

⇒ 0
1/2

/0
1/2 

= x
1/2

 
�
� = x

1/2
. But from the original equation, 

�
� = x 

hence 
�
� = x = x

1/2
 ⇒ x = x

1/2 
 ⇒ 1 = x

-1/2 
or x

1/2 
= 1. Therefore, 
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1
-2 

= (x
-1/2

)
- 2 

or (x
1/2

)
 2 

= 1
2 ⇒ x = 1 for both cases. Let 

�
� = x. 

Find cube-root on both sides to get $��(1/3 
= x

1/3 
 ⇒ 0

1/3
/0

1/3 
= 

x
1/3

 ⇒ �
� = x

1/3
. But from the original equation, 

�
� = x hence 

�
� = 

x = x
1/3 ⇒ x = x

1/3 
 ⇒ 1 = x

-2/3 
or x

2/3 
= 1. Therefore, 1

-3/2 
= (x

-

2/3
)

- 3/2 
or (x

2/3
)

 3/2 
= 1

3/2 ⇒ x = 1 for both cases. Let 
�
� = x. Find 

fourth-root on both sides to get $��(1/4 
= x

1/4 
 ⇒ 0

1/4
/0

1/4 
= x

1/4
 

⇒ �
� = x

1/4
. But from the original equation, 

�
� = x hence 

�
� = x = 

x
1/4 ⇒ x = x

1/4 ⇒ 1 = x
-3/4 

or X
3/4 

= 1. Therefore, 1
-4/3 

= (x
-3/4

)
- 

4/3 
or (x

3/4
)

 4/3 
= 1

4/3 ⇒ x = 1 for both cases. Let 
�
� = x. Find 

fifth-root on both sides to get $��(1/5 
= x

1/5 ⇒ 0
1/5

/0
1/5 

= x
1/5

 

⇒	 �� = x
1/5

. But from the original equation, 
�
� = x hence 

�
� = x 

= x
1/5 ⇒ x = x

1/5 ⇒ 1 = x
-4/5 

or X
4/5 

= 1. Therefore, 1
-5/4 

= (x
-

4/5
)

- 5/4 
or (x

4/5
)

 5/4 
= 1

5/4 ⇒ x = 1 for both cases. Let 
�
� = x. Find 

(3/8)
th 

-root on both sides to get $��(3/8 
= x

3/8 
 ⇒ 0

3/8
/0

3/8 
= x

3/8
 

⇒ �
� = x

3/8
. But from the original equation, 

�
� = x hence 

�
� = x = 

x
3/8

 ⇒ x = x
3/8 ⇒ 1 = x

-5/8 
or X

5/8 
= 1. Therefore, 1

-8/5 
= (x

-5/8
)

- 

8/5
 or (x

5/8
)

 8/5 
= 1

8/5 ⇒ x = 1 for both cases. No matter the root 

one wants to find, the results are the same. One only needs to 

know the fractional number whose powers between 0 and 1 

(roots) do not change the original fraction number. This can 

only be 
�
� = 1. 

(c) Powers less than zero 

Let 
�
� = x. Find power -1 on both sides to get D��E-1 

= x
-1 ⇒ 0

-

1
/0

-1
 = x

-1 ⇒ �/�
�/�  = x

-1 ⇒ �∗�
�∗�  = x

-1
 ⇒ �

�  = 
�
� . But from the 

original equation, 
�
� = x hence 

�
� = x = 

�
� 	⇒ x = 

�
� or x = x

-1
 ⇒ 

x
2 
= 1 ⇒ (x

2
)

1/2
 = 1

1/2
 ⇒ ±x = ±1 ⇒ x = 1. Hence 

�
� = 1. 

Note that, there is no difference in this case with the case 

of finding reciprocals. Let 
�
� = x. Find power -2 on both sides 

to get D��E-2 
= x

-2 ⇒ 0
-2

/0
-2

 = x
-2 ⇒ �/�

�/� = x
-2 ⇒	 �∗��∗� = x

-2
 ⇒ �

� = 

1/x
2
. But from the original equation, 

�
� = x hence 

�
� = x = 1/x

2
 ⇒ x = 1/x

2 
or x = x

-2
 ⇒ x

3 
= 1 ⇒ (x

3
)

1/3
 = 1

1/3
 ⇒ x = 1. Hence �

� = 1. In such a case, X ≠ -1. Let 
�
� = x. Find power -3 on both 

sides to get D��E-3 
= x

-3
 ⇒ 0

-3
/0

-3
 = x

-3 ⇒	 �/��/� = x
-3 

 ⇒	 �∗��∗� = x
-3 

⇒ �
� = 1/x

3
. But from the original equation, 

�
� = x hence 

�
� = x 

= 1/x
3 ⇒ x = 1/x

3 
or x = x

-3 ⇒ x
4 

= 1 ⇒ (x
4
)

1/4
 = 1

1/4
 ⇒ ±x = 

±1 ⇒ X = 1. Hence 
�
� = 1. Let 

�
� = x. Find power -5/7 on both 

sides to get D��E-5/7 
= x

-5/7
 ⇒ 0

-5/7
/0

-5/7
 = x

-5/7 ⇒	 �/��/� = x
-5/7

 ⇒ 
�∗�
�∗� 

= x
-5/7 ⇒	 ��= 1/x

5/7
. But from the original equation, 

�
�  = x 

hence 
�
� = x = 1/x

5/7
 ⇒ x = 1/x

5/7 
or x = x

-5/7 ⇒ x
12/7 

= 1 ⇒ 

(x
12/7

)
7/12

 = 1
7/12

 ⇒ ±x = ±1  ⇒ x = 1. Hence 
�
� = 1. NB: In the 

cases of power method, if x = 0 in any case, then some 

powers such as -1 would disqualify it because such powers 

do not produce 0 i.e. 0
-1

 ≠ 0, 0
-2/3 

≠ 0 etc. This also applies to 

cases where one would be tempted to think that x = ∞. In this 

it is being demonstrated that; 

(-1)
2
 = 1 ≠ -1, (-1)

-4
 = 1 ≠ -1, (0)

-1
 = 

�
� ≠ 0, (0)

-2/7
 = 

�
� ≠ 0, 

(∞)
-1

 = 
�
N ≠ ∞, (∞)

-1/2
 = 

�
NI/O ≠ ∞, and these are some of the 

cases that help retain 1 as the solution. I.e. (1)
2 
= 1, (1)

-4 
= 1, 

(1)
-5/7 

= 1. 

(vi) The indices method 

This method is special in that, it reveals a new idea that 

actually,  

0
0
 = 

�
� …                                 (8) 

in its simplest form. E.g. Let 
�
� = x. Let y = 0. Then, 

�
� = 

!
! = x 

⇒ y
1
/y

1
 =x ⇒ y

1
*y

-1
 = x ⇒ y

1+(-1) 
= y

1-1 
= y

0
 = x. But y = 0 

hence y
0
 = 0

0
 = x. Now combine indices with logarithms to 

get: y
0
 = x ⇒ log y

0 
= log x ⇒ 0*log y = log x ⇒ 0 = log x ⇒ 

x = 10
0 ⇒ x = 1 ⇒	 �� = 0

0 
= 1. 

This assists the method (ii) and is fully supported by limits 

method, to be seen later, that actually, log 0
0 

= log ( 
�
�) = 0 

and 0*∞ = 0. The base of the logarithm you decide to 

introduce does not matter. 

(vii) Method of derivatives 

Consider the derivatives of constants such as 0, -2, 5, ½, 

8/15, etc. It’s known that, the derivatives of all constants are 

zero and there is no harm in revisiting the derivatives a little 

bit. 

For 1, 
�
�� (1) = 

�
�� (1*x

0
) = 

�
�� (1x

0
) = 1*(0*x

0-1
) = 1*0*x

-1
 

= 
�∗�
�  = 

�
� = 0. For 0, 

�
�� (0) = 

�
�� (0*x

0
) = 

�
�� (0x

0
) = 0*(0*x

0-1
) 

= 0*0*x
-1

 = 
�∗�
�  = 

�
� = 0. For -2, 

�
�� (−2) = 

�
�� (-2*x

0
) = 

�
�� (-

2x
0
) = -2*(0*x

0-1
) = -2*0*x

-1
 = 


	∗�
�  = 

�
� = 0. For 5, 

�
�� (5) = 

�
�� (5*x

0
) = 

�
�� (5x

0
) = 5*(0*x

0-1
) = 5*0*x

-1
 = 

 ∗�
�  = 

�
� = 0. For 

½, 
�
�� (1/2)  = 

�
��  (1/2*x

0
) = 

�
��  ((1/2)x

0
) = 1/2*(0*x

0-1
) = 

1/2*0*x
-1

 = 
�/	∗�
�  = 

�
� = 0. For 8/15, 

�
�� (8/15) = 

�
�� (8/15*x

0
) 

= 
�
�� ((8/15)x

0
) = 8/15*(0*x

0-1
) = 8/15*0*x

-1
 = 

;/� ∗�
�  = 

�
� = 0. 

Notice that, for any constant c, the derivative is 
�
� = 0 i.e. 

 
�
�� (P) = 

�
� = 0 ɏ c…                         (9) 

This is the general pattern of the 1
st
 derivative of any 

constant c. 

Derivatives at zero and beyond zero. 

Consider the constant 0. Then 
�
�� (0) = 

�
�� (0*x

0
) = 

�
�� (0x

0
) 

= 0*(0*x
0-1

) = 0*0*x
-1

 = 
�∗�
�  = 

�
� = 0. Therefore, by definition, 

the derivative at 0 given by 
�
�� (0)  = 

�
� . The derivatives 

beyond 0 are constituted by subsequent derivatives given by: 

Q(�) = 0. Q′(�) = 
�
�� (0) = 

�
�. Q′′(�) = 

�²
��² (��) = 

�∗TU
�∗��²  = 

�(�
�)
�²  = 

�(�)
�²  = 

�
�². Q′′′(�) = 

�³
��³ ( ��²) = 

�²∗TU
�∗	��⁴  = 
�(�∗TU
�∗	)�⁴  = 

�(�
	)
�³  = 

�(
�)
�³  = 

�
�³. Q⁴(�) = 

�⁴
��⁴ ( ��³) = 

�³∗TU
�∗��^₂�⁶  = 
�₂(�∗TU
�∗�)�⁶  

= 
�(�
�)
�⁴  = 

�(
	)
�⁴  = 

�
�⁴. Q⁵(�) = 

�⁵
��⁵ ( ��⁴) = 

�⁴∗TU
�∗��^₃�⁸  = 
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�³(�∗TU
�∗�)�⁸  = 
�(�
�)
�⁵  = 

�(
�)
�⁵  = 

�
�⁵. Q⁶(�) = 

�⁶
��⁶ ( ��⁵) = 

�⁵∗TU
�∗ �⁴�ⁱ⁰  = 

�⁴(�∗TU
�∗ )�ⁱ⁰  = 
�(�
 )
�⁶  = 

�(
�)
�⁶  = 

�
�⁶.  

In general; 

Q(ⁿ⁺¹⁾(�) = 
�ⁿ
��ⁿ ( ��ⁿ) = 

�ⁿ∗TU
�∗��⁽ⁿ⁻¹⁾�²ⁿ  = 
�⁽ⁿ⁻¹⁾(�∗TU
�∗�)�²ⁿ  = 

�(�
�)
�⁽ⁿ⁺¹⁾  = 

�(
���)
�⁽ⁿ⁺¹⁾  = 

�
�⁽ⁿ⁺¹⁾ …                         (10) 

Now come to 
�
�. 

Q(�) = 
�
�. Q′(�) = 

�
�� (��) = 

�∗TU
�∗TU�²  = 
�(TU
TU)�²  = 

�
�
�  = 

�
� = 

TU(�
�)�²  = 

(�
�) ffU(�)�² . Q′′(�) = 
�^	
��² (��) = 

�∗TU
�∗TU�²  = 
�(TU
TU)�²  = 

�
�
�  = 

�
� = 

TU(�
�)�²  

= 
(�
�) ffU(�)�² . Q′′′(�) = 

�³
��³ (��) = 

�∗TU
�∗TU�²  = 
�(TU
TU)�²  = 

�
�
�  = 

�
� = 

TU(�
�)�²  = 
(�
�) ffU(�)�² .. 

Qⁿ(�) = 
�ⁿ
��ⁿ (��) = 

�∗TU
�∗TU�²  = 
�(TU
TU)�²  = 

�
�
�  = 

�
� = 

TU(�
�)�²  = 

(�
�) ffU(�)�² . 

Therefore; 

Q(�) = Q′(�) = Q′′(�) = Q′′′(�) = Q⁴(�) = … = Qⁿ(�) = 
�
�  … (11) 

It is important to note that, in the above cases, it was dealt 

with normal derivatives and hence x was just a normal 

variable. 

One should now consider x representing 0 i.e. letting x = 

0. Q(�) = 
�
�  = 

�
� . Q′(�)  = 

�
�� (��)  = 

�
�� (��)  = 

�∗�
�∗�
�²  = 

�(�
�)
�²  = 

(�
�)
�  = 

�
�. Q′′(�) = 

�²
��² (��) = 

�∗TU
�∗��²  = 
(�
�)
�²  = 

�
�² = 

�
�^².Q′′′(�) = 

�³
��³ ( ��²) = 

�²∗TU
�∗	��⁴  = 
�(�∗TU
�∗	)�⁴  = 

�
�
�³  = 

�
�³. Q⁴(�) = 

�⁴
��⁴ ( ��³) = 

�³∗TU
�∗��^₂�⁶  = 
�²(�∗TU
�∗�)�⁶  = 

�
�
�⁴  = 

�
�⁴ . Q⁵(�)  = 

�⁵
��⁵ ( ��⁴)  = 

�⁴∗TU
�∗��³�⁸  = 
�³(�∗TU
�∗�)�⁸  = 

�
�
�⁵  = 

�
�⁵ . Replacing 0 with x, one 

gets: 

Q′(�) = 
�
� = 

�
� = 1. Q′′(�) = 

�
�² = 

�
�² = 

�
�. Q′′′(�) = 

�
�³ = 

�
�³ = 

�
�². Q⁴(�) = 

�
�⁴ = 

�
�⁴ = 

�
�³. Q⁵(�) = 

�
�⁵ = 

�
�⁵ = 

�
�⁴. 

But at Q(�) = 
�
�, it was proved that equation 11 is true, 

hence, �
� = 

�
� = 1 = 

�
� = 

�
�² = 

�
�³ = 

�
�⁴ = … Out of reasoning, it is only 

x = 1 that can satisfy the equation and therefore, 

�
� = 1 = 

�
� = 

�
�² = 

�
�³ = 

�
�⁴ = …               (12) 

(viii)The method of limits 

(a) Approaching 0 

This is a very robust method in proving that actually, 
�
� = 1. 

It’s strong because, first, it’s used even in other problems and 

methods whenever there is a division or logarithms that are 

not direct and hence used whenever doubts arise. Secondly, it 

shows that limit does not approach 1, but, confirms that it’s 

actually 1. In this case, 
�
� = 

�
� and the solution obtained using 

the method of limits, does not approach 1 as one tends nearer 

and nearer to zero but it ascertains that whatever point one 

considers as very close to 0, one gets none other value but 1. 

Since one has 
�
�, then consider lim�→� $��(� . One should 

approach 0 from both left and right sides as in table 1. 

Table 1. Limits from both sides of zero. 

x → 0+ x 10-3 10-4 10-6 10-15 10-20 10-28 10-30 

 
�� 1 1 1 1 1 1 1 

lim�→�� $��(
�
  1 1 1 1 1 1 1 

x → 0- x (-10)-3 (-10)-4 (-10)-6 (-10)-15 (-10)-20 (-10)-28 (-10)-30 

 
�� 1 1 1 1 1 1 1 

lim�→�
 $��(
�
  1 1 1 1 1 1 1 

 

Therefore, lim�→�� $��(�= 1 and lim�→�
 $��(�= 1. Since 

there is no value closer to zero that gives any other solution 

other than 1, one can therefore conclude that this method 

does not approach 1 as one tends to 0 but the answer is 

1(always). 

(b) Using conjugates 

Since one has lim�→� $��(�, the conjugate of x is x hence 

 lim�→� $��(�* $��(�= lim�→� $�^	�^	(�= lim�→� $��(� = limx->0 

(1)= 1 …                          (13) 

(c) Using L’Hospital’s Rule 

Since one has lim�→� $��(�,  

then lim�→�
fkfUfkfU
$��(� = limx->0 

�
� = limx->0 1 = 1…    (14) 

(ix) Method of introducing functions (Trigonometric 

functions) 

Suppose one has 
��
�� = q as the equation. Then, one can 

introduce a trigonometric function on both the numerator and 

denominator and the results would remain unchanged. E.g. 



 Pure and Applied Mathematics Journal 2018; 7(3): 20-36 28 

 

�lm	��
nop 	�� = ( 

��
�� ) = q. Given another one, 

	�
	� = r, then 

pqr 	�
pqr 	� = 

( 
	�
	� ) = r. This is true in any case of 

!
! = j, for all real numbers 

y. For 
�
�, let 

�
� = y. Now introduce the cosine function to both 

the numerator and denominator. Then it comes to 
nop
nop

�
� =( 

�
� ) 

and one can also let x = 0 to have  

( 
�
� ) = 

nop
nop

�
� = 

nop
nop

�
� = 

�
�…                  (15) 

Therefore, 
nop
nop

�
� = 

�
� = 1. Hence 

�
� = y = 1, using the cosine 

function. Taking y to be 0 or ∞, would lead to confusion, i.e. �
�= 0 would mean that 

�
� = 

nop
nop

�
� = 

�
� = 1 = y = 0 but it’s know 

that 1 ≠ 0. Therefore, 
�
� ≠ 0. Again, 

�
�= ∞ would mean that 

�
� = 

nop
nop

�
� = 

�
� = 1 = y = ∞ but it’s known that 1 ≠ ∞. Therefore, 

�
� ≠ 

∞. 

Now, introduce the tangent function to have 
�
� = 

�
� → 

str
str

�
� 

= 
�
�. Again, introduce the sine function to have 

�
� = 

�
� → 

pqr
pqr

�
� = �

�. But these two functions (sine and tangent) require us to use 

the method of limits, either approaching zero or the 

L’Hospital’s Rule. 

Let us use the L’Hospital’s Rule. 

limx->0 

str
str

�
� = limx->0 

�
� = limx->0

fkfU str �fkfU str � = limx->0 

punO �
punO � = limx-

>0 

7� nop�v 8²
7� nop�v 8² = 

7� nop �v 8^	
7� nop �v 8^	 = 

w� �v x²
y� �v z² = 

�
� = 1. limx->0 

pqr
pqr

�
� = limx->0 

�
� = 

limx->0

fkfU pqr �fkfU pqr � = limx->0 

�lm�
�lm� = 

nop �
�lm�  = 

�
� = 

�
� = 1. Even if one uses 

the method of limits and approaches 0 from both sides, it’s 

found that, at every point, the functions will always produce 

1. That will also confirm that one is not tending to 1 but is at 

1 always. This method is only applicable whenever the 

numerator and the denominator are equal such as 
	���
	��� and 

does not apply if the two are different such as 
	�� 
��	 . 

NB: An appeal is being made to anybody working out 

problems involving limits to use other methods to confirm 

the solution whenever direct substitution shows the results to 

be 
�
�. That is; before concluding that 

�
� = 1 as was seen in 

limits, other methods such as L’Hospital’s Rule should be 

employed because some situations are and can be deceptive. 

Some methods will confirm it while other cases will be 

shown otherwise. 

(x) Method of self- operations 

This method is also known as the method of Self- 

Addition, -Subtraction, -Multiplication and -Division. 

In normal operations, whatever is done on the left hand 

side of an equation, the same is done on the right hand side of 

that equation. E.g. 
	�
�
��	  = m ⇒ 

	�
�
��	  * (� + 2) = m * (� + 2). 

Hence 
	�
�  = 5 ⇒ 

	�
�  * 3 = 5 * 3 i.e. 15 = 15. But in this method 

of self- arithmetic, whatever is done to the left hand side is 

different from what is done to the right hand side but still 

correct mathematically. E.g. 

 
!²
!�� = k ⇒ 

!²
!�� + 

!²
!�� = k + k…                (16) 

I.e. 
;
	 = 4 ⇒ 

;
	 + 

;
	 = 4 + 4. This is what is meant by self- 

operations: 

I. If one subtracts the equation, then subtract the solution. 

II. If one adds the equation, then add the solution. 

III. If one multiplies the equation by itself, then multiply 

the solution by itself. 

IV. If one divides the equation by itself, then divide the 

solution by itself. 

(a) Self- addition 

For 
�
�, let x = 0. Then 

�
� = 

�
�. Let the solution be y hence 

�
� = 

�
� = y. By self- addition one gets 

�
� + 

�
� = y + y ⇒ 

�∗���∗�
�²  = 2y 

⇒ 
�²��²
�²  = 2y ⇒ 

	�²
�²  = 2y ⇒ 2 = 2y ⇒ 1 = y hence y = 1. 

Therefore; 
�
� = 

�
� = y = 1. This is irrespective of whether one 

is to employ limits, L’Hospital’s Rule and cancellation rules 

or not. 

(b) Self- subtraction 

For 
�
�, let x = 0. Then 

�
� = 

�
�. Let the solution be y hence 

�
� = �

� = y. Then 

�
� - 

�
� = y – y…                          (17) 

Equation (17) ⇒ 
�∗�
�∗�

�²  = y(1 – 1). Letting k = (1-1), then, 

�²
�²
�²  = y(k) = yk ⇒ 

�²(�
�)
�²  = yk ⇒ 

�({)
�  = yk ⇒ 1k = yk ⇒ 1 = 

y hence y =1. Therefore, 
�
� = 

�
� = y = 1. 

Alternatively: 
�
� - 

�
� = y – y ⇒ 

�
�
�  = y(1 – 1) ⇒ 

�(�
�)
�  = y(1 

– 1) ⇒ 
�({)
�  = y(k) ⇒ 1(k) = y(k) ⇒ 1 = y hence y = 1. 

Therefore, 
�
� = 

�
� = y = 1. 

(c) Self- multiplication. 

For 
�
�, let x = 0. Then 

�
� = 

�
�. Let the solution be y hence 

�
� = �

� = y. By self- multiplication it becomes, 

 
�
� * 

�
� = y*y…                           (18) 

Equation (18) ⇒ 
�∗�
�∗� = y² →, 

�²
�² = y² ⇒ 1 = y² ⇒ ±1 = ±y ⇒ 

1 = y hence y = 1. Therefore, 
�
� = 

�
� = y = 1. NB: This was 

also seen in the method of powers. 

(d) Self- division 

For 
�
�, let x = 0. Then 

�
� = 

�
�. Let the solution be y hence 

�
� = �

� = y. By self- division one gets, 

� �⁄� �⁄  = 
!
! …                                (19) 

Equation (19) ⇒	 �� * 
�
� = 

!
! or 1 ⇒ 

�²
�² = 

!
! or 1. 

�
� = 

!
! or 1 ⇒ 

1 = y hence y = 1. Therefore, 
�
� = 

�
� = y = 1. 

(xi) The factorial method 

First, there’s need to re-visit combinations. For any 

number x, 
x
Cx = 1. E.g. 

5
C5 = 1 and this is obtained using the 
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procedure; 
5
C5 = 

 !
 !( 
 )! = 

�	�
�	�	(�) = 1. This is similar for the case of x = 

0 such that 

 
0
C0 = 

�!
�!(�
�)! = 

�
�	(�) = 1…                    (20) 

For any equation 
�
� = j, it’s allowed to deal with only the 

left hand side but whatever is done to the numerator, should 

also be done to the denominator. This gives one a chance to 

introduce factorials on both numerator and denominator. E.g. ��
�� = y ⇒ 

��!
��! = 

�
� = y where in both cases, y = 1. Therefore, 

�
� = 

k ⇒ 
�!
�! = 

�
� = k where in both cases, k = 1. This is not news for 

any non- negative numerator that is equal to its denominator 

i.e. For all whole numbers x, 
�
�  and 

�!
�!  have the same 

solutions. Examples are: 
�
� = 1 and 

�!
�! = 1 ⇒ 

�
� = 

�!
�! = 

�
� = 1. 

		
		 

= 1 and 
		!
		! = 1 ⇒ 

		
		 = 

		!
		! = 

�
� = 1. 

�
� = 1 and 

�!
�! = 1 ⇒ 

�
� = 

�!
�! = 

1. Therefore, 
�
� = 1 and 

�!
�! = 1 ⇒ 

�
� = 

�!
�! = 

�
� = 1. If one says that 

k = 0 or k = ∞, then the results would be misleading. E.g. for 

k = 0, 
�
� = k = 0 and hence 

�!
�! = 1 = k = 0 which would mean 

that 
�
� = 0 = 

�!
�! = 1 ⇒ 0 = 1 which is wrong. And for k = ∞, 

�
� = 

k = ∞ and hence 
�!
�! = 1 = k = ∞ which would mean that 

�
� = ∞ 

= 
�!
�! = 1 ⇒ ∞ = 1 which is also wrong. 

Prove that log $""( = 0. 

Let x be 0 (x = 0). Then log $��( = log $��(. Note that, the 

logarithm to base 10 is being used though any other base can 

be employed, it doesn’t change the results. Limits are used to 

have 

log $��(  = lim�→�log $��(� . The method will approach 0 

from both positive and negative sides (table 2). 

Table 2. Logarithms from both sides of zero. 

x → 0+ x 10-3 10-6 10-10 10-15 10-25 10-30 10-100 

 
�� 1 1 1 1 1 1 1 

log$��(  0 0 0 0 0 0 0 

lim�→����� $��(
�
  0 0 0 0 0 0 0 

x → 0- x (-10)-3 (-10)-6 (-10)-10 (-10)-15 (-10)-25 (-10)-30 (-10)-100 

 
�� 1 1 1 1 1 1 1 

log$��(  0 0 0 0 0 0 0 

lim�→�
��� $��(
�
  0 0 0 0 0 0 0 

 
One should know that it’s only log{ 1 = 0 ∀ k � (positive 

numbers). Therefore, 

log $��( = 0 = log 1…                   (21) 

hence 
�
� = 1. 

Again, there’s no tending to 0 but confirming that the 

answer is 0. 

(xii) The Logarithm base switch rule method 

From the above proof, it’s also possible to prove that lim�→�� 

log� � = 0 i.e. x = 
�
� ≠ 0 and lim�→N� log� � = 0 i.e. x = 

�
� ≠ ∞ 

but lim�→��/⁻ log� � = ∞ i.e. x = 
�
� = 1 hence log$TT( 	� = log� � = 

∞. 

The logarithm base switch rule shows that, 

log� P = (log� �)-1 
= 

�
�o�� �…                 (22) 

E.g. log�� 5  = 
�

�o�� ��  = 0.69897004. log, 10  = 
�

�o�IT ,  = 

2.302585093. Let b = 10 and c = 
�
� , then it comes to, 

log��	 $��(  = 
�

�o�$TT( ��
 and since log�� $��(  = 0, then, 0 = 

�
�o�$TT( ��

. Here, the question is, “What can one divide 1 with to 

have 0?” I.e. “What is the value of y such that 
�
! = 0?” In 

normal circumstances, it is only the division of any real 

number by a very large number, say ∞, which can result in 0. 

I.e. 
�
! = 

�
N = 0. Therefore, the y must be a very large number, 

say ∞. So, log$TT( 10 = ∞. Let 
�
� = k and hence log{ 10 = ∞. 

One should be sure that, it’s only the logarithm to base 1 of 

any positive number that can give ∞, i.e. log� 10 = ∞. This is 

true for all numbers. Therefore, log{ 10 = log� 10 = ∞ but k 

= 
�
� hence log{ 10 = log$TT( 10 = log� 10 = ∞. Therefore, one 

can continue with equation whereby, 0 = 
�

�o�$TT( ��
	⇒  0 = 

�
�o�� �� = 

�
�o�I �� = 

�
�o�$TT( ��

 = 
�
N = 0. In this method, the 

�
� can 

only be equal to 1 to have ∞ as the logarithm. Then, the ∞ 

divides 1 to bring it to 0 and hence both sides balance, 0 = 0. 

In general, 
�
� = 1 using the logarithm base switch rule. NB: 

Even if one has 10 being replaced by 0, then it can result in log� 0 = - ∞ but 
�


	N = 0 also. 

(xiii)The binomial expansion case method 

From the previous work on indices, it was seen that, 0
0
 = 

�
� 

in its simplest form. Then, it’s good to re-visit the binomial 

expansion a little bit. If one has (� + �)2
, then the expansion 

is given by: (� + �)2 
= a

2
b

0
 + 2a

1
b

1
 + a

0
b

2
 = a

2
 + 2ab + b

2
. 
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Similarly, one has (� + �)3 
= a

3
b

0
 + 3a

2
b

1
 + 3a

1
b

2
 + a

0
b

3
 = a

3
 

+ 3a
2
b + 3ab

2
 + b

3
. Now consider the following cases; (a)

2
 = 

a
2
 and (a)

3
 = a

3
. 

And in general, 

(a + b) n 
= ∑ 7r�8��� a

x
b

n-x 
= ∑ r!

�!(r
�)!r���  a
x
b

n-x 
= 

r!t⁰�ⁿ
�!r!  + 

r!t¹�ⁿ⁻¹
�!(r
�)! + 

r!t²�ⁿ⁻²
	!(r
	)! + … + 

r!tⁿ�⁰
r!�!  and (a)

n
 = a

n
. If one lets b = 0 

in the case of (a + b)n
, then it would result in; (a + 0)n 

= r!t⁰�ⁿ
�!r!  + 

r!t¹�ⁿ⁻¹
�!(r
�)! + 

r!t²�ⁿ⁻²
	!(r
	)! + … + 

r!tⁿ�⁰
r!�!  = 0 + 0 + 0 + … + 

r!tⁿ�⁰
r!�! 	= 

r!tⁿ�⁰
r!�! . But since 

r!
r!�! = 

n
Cn = 1, then (a + 0)n 

= 
r!tⁿ�⁰
r!�!  = 1 ∗ aⁿ ∗ 0⁰ 

= a
n
*0

0
 = 0

0
a

n
. But it’s known that, (a + 0)n 

= (a)
n
 

= a
n,
 hence 0

0
a

n 
= a

n ⇒ 0
0 

= 1. Therefore, 0
0 

= 
�
� = 1. Simple 

cases are: (a + 0)2 
= a

2
0

0
 + 2a

1
0

1
 + a

0
0

2
 but since 0

1
 = 0, 0

2
 = 

0, a
0
 = 1, then (a + 0)2 

= a
2
0

0
 + 0 +0 = a

2
0

0
 = 0

0
a

2
. But (a + 0)2 

= (a)
2
 = a

2
. This shows that, a

2
 = 0

0
a

2
 ⇒ 0

0
 = 1 and 

hence 0
0 

= 
�
� = 1. Again, (a + 0)3 

= a
3
0

0
 + 3a

2
0

1
 + 3a

1
0

2
 + 

a
0
0

3
, but since 0

1
 = 0, 0

2
 = 0, 0

3
 = 0, a

0
 = 1, then (a + 0)3 

= 

a
3
0

0
 + 0 +0 + 0 = a

3
0

0
 = 0

0
a

3
. But (a + 0)3 

= (a)
3
 = a

3
. This 

shows that, a
3 
= 0

0
a

3
 ⇒ 0

0 
= 1 and hence 

00 = 
�
� = 1 …                                 (23) 

(xiv) The inverse- inverse method 

It is known that, 

(X
-1

)
-1

 = X. Then, 

(X
-1

) (X
-1

)
-1 

= 1...                             (24) 

Let X = 2. Then (2
-1

)
-1 

= $�	(-1 
= $	�( = 2 ⇒ (X

-1
)

-1
 = X. 

Again, (2
-1

)* (2
-1

)
-1 

= $�	( $�	(-1 
= (0.5) ($�	(-1 

= (0.5) (2) = 1 ⇒ 

(X
-1

) (X
-1

)
-1 

= 1. Also, if X = 

�
� , then, ($
�� (-1 

)
-1

 = (-4)
-1

 = 

�
� 	⇒ (X

-1
) (X

-1
)

-1 
= 1. But this can also be represented as: 

$
�� (-1 ($
�� (-1 
)

-1 
= (-4) ($
�� (-1 

)
-1 

= (-4) (-4)
-1

 = (-4) $
�� ( = (-

4) (-0.25) = 1 ⇒ (X
-1

) (X
-1

)
-1 

= 1. Consider the part involving 

X = 2. Then, (2
-1

)
-1 

= $�	(-1 
= (0.5)

-1
 = 

�
�.  = 2. Again, (2

-1
)* (2

-

1
)

-1 
= $�	( $�	(-1 

= (0.5) $�	(-1 
= (0.5)(2) = 1. Hence (2

-1
)*(2

-1
)

-1 

= $�	( $�	(-1 
= $�	(	(2) = 

	
	 = 1. In the next case, let y= 0. Then, 

(y
-1

) (y
-1

)
-1

 = $�!( $�!(-1 
= $�!( $!�( = $!!( = 1, because (X

-1
) (X

-

1
)

-1 
= 1. Alternatively, let again y = 0. For 

�
�, one has 

!
!. Then, 

$!!(-1 ($!!(-1 
)

-1 
= $!!( $!!(-1 

= $!!( $!!( = $!²!²( = 1 ⇒ $��( = $�²�²( 

= 1. 

Testing other solutions 

Let 
�
� = x. 1

st
 case, let 

�
� = x = 0. 2

nd
 case, let 

�
� = x = 1. 3

rd
 

case, let 
�
� = x = ∞. 

1
st
 case, 

�
� = x = 0. Then, (0

-1
) (0

-1
)

-1 
= $��( $��(-1 

= (∞) $��(-1 

= (∞)$��(= ∞*0 = 0 (shown using limits). But 0 ≠ 1 hence 

does not fulfil the condition of (X
-1

) (X
-1

)
-1 

= 1. 2
nd

 case, 
�
� = x 

= 1. Then, (1
-1

) (1
-1

)
-1 

= $��( $��(-1 
= (1) $��(-1 

= (1) $��( = (1) 

(1) = 1*1 = 1. But 1 = 1, hence fulfils the condition of (X
-1

) 

(X
-1

)
-1 

= 1. 3
rd

 case, 
�
� = x = ∞. Then, (∞

-1
) (∞

-1
)

-1 
= $ �N( $ �N(-1 

= (0) $ �N(-1 
= (0) $N�( = 0*∞ = 0 (shown using limits). But 0 

≠ 1 hence does not fulfil the condition of (X
-1

) (X
-1

)
-1 

= 1. 

Conclusion: It’s only 2
nd

 case, 
�
� = x = 1, that satisfies the 

condition of (X
-1

) (X
-1

)
-1 

= 1. Therefore it can be conclude 

that 
�
� = 1. 

NB: Limits have been used (method of approaching from 

both sides) to show that 
�
N 	⇒  0, 

�
�  → ∞ , ∞ *0 ⇒  0 and 

0*∞	 ⇒  0. It’s also good to note that, using the limits 

method, 
�
�  → +∞  or 

�
�  → −∞  but in both cases, 0*∞  and ∞*0 tend to 0 irrespective of whether the ∞ is positive or 

negative. 

(xv) The method of geometric series (G.P) 

Let the geometric series knowledge be used to see what 
�
� 

is. The three cases of 
�
� = x when x = 1, x = 0, x = ∞ will be 

tested hence the idea of limits will help argue the cases out. 

In a geometric series, when r = 1, then Sn = na and a1 = a2 = 

a3 = … = an = … = a∞. If r = 1, then the series, though 

geometric, is also an arithmetic series (A.P) with d = 0 and a1 

= a2 = a3 = … = an = … = a∞. In this case of A.P,  

Sn = 
�
	n [2a + (n – 1)d] = 

�
	n (2a) = 

�
	n (a + l) …      (25) 

where l is the last term of the series. 

Example 1: 2 + 2 + 2 + 2 + 2. For G.P case, r = 
	
	 = 1, a = 

a1 = a2 = a3 = a4 = a5 = 2, n = 5. Sn = na ⇒ S5 = 5(2) = 10. For 

A.P case, d = 2 – 2 = 0, a = a1 = a2 = a3 = a4 = a5 = 2, n = 5, l 

= 2. Sn = 
�
	n (2a) ⇒ S5 = 

 
	 (2*2) = 

 
	 (4) = 5(2) = 10. Or Sn = 

�
	n (a + l) ⇒ S5 = 

 
	 (2+2) = 5(2) = 10. Therefore, S5 = 10 for 

both G.P and A.P, when r = 1 or d = 0 respectively. 

Example 2: 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1. For G.P case, r = �
� = 1, a = a1 = a2 = a3 = … = a8 = 1, n = 8. Sn = na ⇒ S8 = 

8(1) = 8. For A.P case, d = 1 – 1 = 0, a = a1 = a2 = a3 = … = 

a8 = 1, n = 8, l = 1. Sn = 
�
	n (2a) ⇒ S8 = 

;
	 (2*1) = 

;
	 (2) = 8(1). 

Or Sn = 
�
	n (a + l) ⇒ S8 = 

;
	 (1+1) = 

;
	 (2) = 8(1). Therefore, S8 

= 8 for both G.P and A.P, when r = 1 or d = 0 respectively. 

NB: The above scenarios hold for all cases, where r = 1 or d 

= 0. 

Now let the concentrate be on the G.P part. It’s known that 

if r = 1, then Sn = a1 + a2+ a3 + … + an ⇒ a1 = a2 = a3 = … = 

an. Let the number of terms be reduced to 5 only. Then, a1 + 

a2+ a3 + a4 + a5 is the new G.P. If r = 1, then a1 = a2 = a3 = a4 = 

a5. But r = 
t��It�  hence r = 

tOtI = 
t�tO = 

t�t�= 
t�t�= 1. Now, focus on 

the series below up to 5
th

 term; 
�
� + 

�
� + 

�
� + 

�
� + 

�
�, n = 5. Let it 

be replaced by x1 + x2 + x3 + x4 + x5 where xi = 
�
� and hence, 

x1 = x2 = x3 = x4 = x5 and r = 
7� �v 8
7� �v 8 = 

�
�*

�
� = 

�
� 

One want to assume that, the three answers; r = 0, r = 1 

and r = ∞, are applicable for r = 
�
�. 
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1
st
 Case, r = 

�
� = 0. Here, it’s meant that 

�O�I = 0, 
���O = 0, 

���� = 

0, 
���� = 0. 

But from limits, it’s possible to have this scenario iff the 

numerator is any real number, rn, and the denominator is a 

very large number, say ∞. Then one would have; 

�O�I = 
��
N  = 0 …                                 (26) 

 
���O = 

��
N  = 0 …                                (27) 

 
���� = 

��
N  = 0 ...                                  (28) 

 
���� = 

��
N  = 0 …                               (29) 

Consider (26) and (27). In (26), x2 = rn (any real number) 

but in (27), the x2 = ∞. But it’s true that in both cases, x2(26) = 

x2(27). Then it would mean that x2(26) = x2(27) = rn = ∞. This is a 

contradiction because any real number, rn, is not equal to ∞. 

Therefore, rn ≠ ∞. Hence this fails to hold true when it’s taken 

that r = 
�
� = 0. Therefore, r = 

�
� ≠ 0. If one decides to compare 

the other x’s, the same results will be found, meaning that; 

(x2 = rn)(26) ≠ (x2 = ∞)(27), (x3 = rn)(27) ≠ (x3 = ∞)(28), (x4 = 

rn)(28) ≠ (x4 = ∞)(29) and in general, 

(xi = rn) ≠ (xi = ∞) which implies that, r ≠ 0 hence 
�
� ≠ 0. 

E.g. 5 ≠ ∞, -2 ≠ ∞, 

�
  ≠ ∞, 500 ≠ ∞, etc. 

2
nd

 Case, r = 
�
� = 1. Here, it’s meant that 

�O�I = 1, 
���O = 1, 

���� = 

1, 
����  = 1. Whether from limits or normal operations of 

numbers, this scenario is only possible iff the numerator is 

equal to the denominator. And can be any real number, say -

10, -1/3, 2, 4, 5.7, etc. In these cases, there is no 

contradiction. Take for example both the numerator and 

denominator to be 5. Then 

�O�I = 
 
  = 1 …                              (30) 

 
���O = 

 
  = 1 …                             (31) 

 
���� = 

 
  = 1 …                             (32) 

 
���� = 

 
  = 1  …                             (33) 

Consider (30) and (31) in this case. In (30), x	 = 5 and in 

(31), x	 = 5. Compare all the x’s in all the equations above. It 

will, for example, be found that x2(30) = x2(31) = 5, meaning 

that there is no contradiction. Whatever number one may take 

to be the numerator as well as the denominator, no 

contradiction will arise. This shows that for r = 1, hence 
�
� = 

1, there is no contradiction at all. Therefore, r = 
�
� = 1. 

3
rd

 Case, r = 
�
� = ∞. Here, it’s meant that, 

�O�I = ∞, 
���O = ∞, 

���� 
= ∞, 

����  = ∞. From limits, this scenario is possible iff the 

numerator is any real number, rn, and the denominator is a 

very small number, say 0. That is to say; 

�O�I = 
��
�  = ∞ …                                  (34) 

 
���O = 

��
�  = ∞ …                                  (35) 

 
���� = 

��
�  = ∞ …                                 (36) 

 
���� = 

��
�  = ∞ …                               (37) 

Consider the equations (34) and (35) above. In (34), x2 = 

rn (any real number), but in (35), x2 = 0. But it’s true that 

x2(34) = x2(35). Then, it would imply that x2(34) = x2(35) = rn = 0. 

Since this is a contradiction, then; 

(x2 = rn)(34) ≠ (x2 = 0)(35), (x3 = rn)(35) ≠ (x3 = 0)(36), (x4 = 

rn)(36) ≠ (x4 = 0)(37). And in general, 

(xi = rn) ≠ (xi = 0) which implies that, r = 
�
� ≠ ∞. E.g. 5 ≠ 0, 

-2 ≠ 0, -1/5 ≠ 0, 500 ≠ 0, etc. 

Conclusion: In general, r = 
�
� ≠ 0 and r = 

�
� ≠ ∞ because 

they bring contradiction. But r = 
�
� = 1 has no contradiction in 

the geometric series method with r = 1. 

(xvi) Zero as an interval, a range and a point 

An interval, say [y1, y2], can be converted into a range and 

consequently, it can be minimized to a point. This is the 

whole idea in any given point. Consider any interval, [y1, y2] 

that can be converted into a range y1 - y2 for y2 – y1 (Figure 

1). But even if y1 > y2, the operation would bear the same 

results. Take real numbers for y1 and y2, say y1 = 4, y2 = 10. 

Then one would have [y1, y2] = [4, 10] and the range would 

be y2 - y1 = 10 – 4 = 6 units. In all cases of real numbers, 0 

can be represented as an interval and a range as well. In such 

a case, one only needs to reduce the interval until y1 = y2 and 

this would bring the results to 0, i.e. y2 - y1 = 0 because y2 

would be equal to y1 (y2 = y1 hence y2 - y1 = 0). This can be 

achieved in several ways. One way is to fix y1 and moving y2 

closer and closer to y1 until y2 becomes y1 (Figure 4). When 

the two are equal, then at that, there’s a point and not a range. 

This point is zero, i.e. has a range 0 (y1 – y2 = 0). The second 

way is to fix y2 and moving y1 closer and closer to y2 until y1 

becomes y2 (Figure 2). When the two are equal, then at that, 

there’s a point and not a range. This point is zero, i.e. has a 

range 0 (y2 - y1 = 0). The last way to achieve the same results 

is to consider both y1 and y2 simultaneously. Instead of fixing 

any point, one may decide to move both towards each other 

until the two meet at a new point (Figure 3). One moves the 

two at an equal rate and when they meet, y1 = y2 and hence y2 

- y1 = 0 or y1 – y2 = 0. The whole thing becomes a point 

eventually. One can see the illustrations below: 

 

Figure 1. Original interval. 

 

Figure 2. Fixing y2. 
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Figure 3. Varying y1 and y2 simultaneously. 

 

Figure 4. Fixing y1. 

Mathematically, let y1 = 4 and y2 = 10. Then y2 - y1 = 10- 4 

= 6. Reduce y2 by 3 units, then one has y21 = 7. Here, y21 - y1 

= 7- 4 = 3. Reduce y21 by 2, then one has y22 = 5. Here, y22 - 

y1 = 5- 4 = 1. Reduce y22 by 0.5, then one has y23 = 4.5. Here, 

y23 - y1 = 4.5- 4 = 0.5. Reduce y23 by 0.09, then one has y24 = 

4.41. Here, y24 - y1 = 4.41- 4 = 0.41. Reduce y2i until y2i � y1, 

i.e. y2i - y1 � 0. In this case, one had fixed y1. If one fixes y2 

in the next case, it will involve increasing y1 by some length 

until y1i � y2, i.e. y1i - y2 � 0. In practical; y2 - y1 = 10- 4 = 6. 

Increase y1 by 3 units, then one has y11 = 7. Here, y2 - y11 = 

10- 7 = 3. Increase y11 by 2, then one has y12 = 9. Here, y2 - 

y12 = 10- 9 = 1. Increase y12 by 0.5, then one has y13 = 9.5. 

Here, y2 - y13 = 10- 9.5 = 0.5. Increase y13 by 0.09, then one 

has y14 = 9.59. Here, y2 - y14 = 10- 9.59 = 0.41. Continue to 

increase y1i until y1i � y2, i.e. y2 - y1i � 0. 

The last case involves changing both y1 and y2. Here, even 

if one does not vary y1 and y2 by equal lengths, what is finally 

proved is the same. Let y1 = 2 and y2 = 10. Then, y2 – y1 = 

10 – 2 = 8. Reduce y2 by 2 and increase y1 by 2. Then, one 

has y2 = 8, y1 = 4 and y2 – y1 = 8 – 4 = 4. Increase y1 by 1 

and reduce y2 by 1 to get y1 = 5, y2 = 7 and y2 – y1 = 7 – 5 

= 2. Increase y1 by 0.8 and reduce y2 by 0.8 to get y1 = 5.8, 

y2 = 6.2 and y2 – y1 = 6.2 – 5.8 = 0.4. Increase y1 by 0.18 

and reduce y2 by 0.18 to get y1 = 5.98, y2 = 6.02 and y2 – y1 

= 6.02 – 5.98 = 0.04. One can continue with this process until 

y1 � y2 and hence y2 - y1 � 0.These three cases illustrate how 

it is possible turn a range into a point, say a big interval into a 

small interval of, say length 0.Suppose that at each stage of 

the three cases, one was performing reduction and this was 

followed by division of the resulting interval in terms of a 

range. I.e. 
!ₐₑ
!ₓₔ
!ₐₑ
!ₓₔ. For case 1 and case 2, it would have been 

��
�
��
� = 

�
� = 1, 

F
�
F
� = 

�
� = 1, 

 
�
 
� = 

�
� = 1, 

�. 
�
�. 
� = 

�. 
�.  = 1, 

�.��
�
�.��
� = 

�.��
�.�� = 1 etc. And for case 3, it would have been 

��
	
��
	  = 

;
;  = 1, 

;
�
;
�  = 

�
�  = 1, 

F
 
F
  = 

	
	  = 1, 

�.	
 .;
�.	
 .;  = 

�.�
�.�  = 1, 

�.�	
 .�;
�.�	
 .�; = 

�.��
�.�� = 1 etc. 

Note that, no matter how small one tries to make the range 

or interval, the division of what remains in order to get 0 

(point) is always 1. This proves that one needs to see that 0 is 

an interval as well as a range reduced to a point. Therefore, 

since 0 = range/ interval, then it can be concluded that 

 
�
� = 

��� ,
��� , = 

¡�-,�¢�£
¡�-,�¢�£ = 1…                          (38) 

This can also be seen in the uniform distribution whose 

probability distribution function (pdf) is proved to be a pdf 

by dividing a range/ interval by itself. NB: The division of a 

range/interval in the above results can also be used to prove 

the gradient of a point as 1. 

(xvii) The graphical method 

One may want to try and see where the graph of x = 
�
� cuts 

the x-axis. In this method, zero is being approached from both 

sides. Note that one can also use the graph of y = 
�
� and see 

where it cuts the y-axis. Therefore, let x = 
�
�. From the positive 

and negative sides, then approach 0 as shown in table 3. 

Table 3. Co-ordinates for graphing. 

+ve side 
¤"
¤" = 1 

¥
¥ = 1 

¤
¤ = 1 

".¦
".¦ = 1 

".¤
".¤ = 1 

¤"H§
¤"H§ = 1 

¤"H¨
¤"H¨ = 1 

¤"H¥"
¤"H¥" = 1 ……. 

≃	"
≃	" =1 

Co-ordinate (1,49) (1,42) (1,35) (1,28) (1,21) (1,14) (1,7) (1,0) ……. (1,y) 

-ve side 

¤"

¤" = 1 


¥

¥ = 1 


¤
¤
 = 1 


".¦

".¦ = 1 


".¤

".¤ = 1 


¤"H§

¤"H§ = 1 


¤"H¨

¤"H¨ = 1 


¤"H¥"

¤"H¥" = 1 ……. 


(≃	")

(≃	") =1 

Co-ordinate (1,-49) (1,-42) (1,-35) (1,-28) (1,-21) (1,-14) (1,-7) (1,0) ……. (1,-y) 

 

Figure 5. Graph showing continuity at  
�
�. 
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From the graph, in figure 5, it can be seen that as one 

approaches zero from both sides, the graph is a straight line 

cutting the x-axis at 1 i.e. x = 1. But it’s known that x = 
�
� 

hence x = 
�
� =1, graphically. It cannot be argued that, as one 

approaches 0, 1 is approached. But at any level, one has 1 as 

the answer. The graph is continuous at all points because at 

any point of division, one obtains 1 and the graph is a straight 

line, hence it is a graph of x = 1, which is simply x = 1 = 
�
�. If 

one wants to argue that the graph is not continuous at 
�
�, then 

the previous method of range /interval disqualifies the 

argument. This is because it would mean that at any point, 

there is a gap which is not true. I.e. 
	�
�
	�
� = a gap, 

��
	;
��
	; = a 

gap, 

 �
(
� )

 �
(
� ) = a gap, 


�
(
�.�)

�
(
�.�) = a gap, etc. 

(xviii) The negation method 

It’s known that, from the real analysis knowledge, if one 

has any number x, then 

x + 0 = x and 0 – x = -x. Let x = 0. Then, consider 
�
� where 

one can say 
�
� = 

�
� = y. Then, 0 - 

�
� = -y hence 


�
�  = -y…                          (39) 

So, 0 - 
�
� = 

�∗�
�
�  = 

�∗�
�∗�
�  = 

�(�
�)
�  = 0 – 1 = -y ⇒ -1 = -y 

⇒ y = 1. Therefore 
�
� = 

�
� = y = 1. Again, x + 0 = x. Then, 

�
� + 

0 = y hence 
���∗�

�  = y ⇒ 
�∗���∗�

�  = y ⇒ 
�(���)

�  = y ⇒ 1 + 0 = y 

⇒ y = 1. Therefore 
�
� = 

�
� = y = 1. And in general, the method 

of negation shows that 
�
� = 

�
� = y = 1 ⇒ 

�
� = 1. 

(xix) The power 0 method verses other solutions 

Since it has been proved that 0
0
 = 

�
�, one can try to work 

out 
�
� using power zero. Then in this case, let 

�
� = x ⇒ ( 

�
� )0

 = 

x
0 ⇒  ( 

�
�  )

0 
= 1. So, 0

0
/0

0
 = 1 ⇒  [0/0] / (0/0) = 1 ⇒ 

(0*0)/(0*0)= 1 ⇒	 �� =1. Alternatively, one can have 
�
�  = x. 

Then ( 
�
� )0

 = x
0 ⇒ 

�T
�T = x

0 ⇒	 �T�T = 
�T
�  and in this equation, the 

numerators and the denominators can be compared by 

equating them to each other. So, 0�  = x
0 

and 0�= 1. The 

comparison of the denominators is what yields the direct 

answer that 0�= 1 and hence 0� = 
�
� = x

0
 = 1. One would be 

glad to try to assume that x = 0, x = 1 and x = ∞. Then there 

would be: 

Case 1: 
�
� = x = 0. Then, ( 

�
� )0

 = x
0 

= 0� ⇒ 
�T
�T = x

0 
= 0� ⇒ 

�T
�T  = 0�  ⇒ 

�T
�T  = 

�T
�  and in comparing the denominators, one 

has 0�= 1. Note that one can only compare the denominators 

because the numerators do not inform us anything useful. In 

this case, if x = 0, then 0�= 
�
� = 1. It can be seen that, at the 

beginning, 
�
� = x = 0 doesn’t help to know anything about the 

equation’s solution until one turns 0 into 0� = 
�
� and it’s when 

one is able to see that 0�= 
�
� = 1. 

Case 2: 
�
� = x = 1. Then, 

( 
�
� )0

 = x
0 
= 1� 	⇒ 

�T
�T = 1� ⇒ 

�T
�T = 

�T
�  …           (40) 

but 1� = 1 hence 
�T
�T = 

�
� and comparing both the numerators 

and denominators of both sides of the equation, one obtains 0�  = 1. Therefore, 0�  = 
�
�  = 1. Note that, in this case, it’s 

possible to compare both the numerator and the denominator 

and both are providing the same information which agrees 

unanimously. 

Case 3: 
�
� = x = ∞. Then, ( 

�
� )0

 = x
0 

= ∞� 	⇒ 
�T
�T = ∞� ⇒ 

�T
�T 

= 
NT
� , comparing the denominators, one gets, 0�  = 1. 

Therefore, 0�  = 
�
�  = 1. The numerators do not inform 

anything useful to help in concluding the case 3. NB: For 

both case 1 and case 3, it’s possible to compare only the 

denominators but for case 2, one can compare both 

numerators and denominators. 

(xx) Using Euler’s number 

The Euler’s number e can be of great help if combined 

with logarithm to help rewrite any given expression. This is 

demonstrated as: Since 
�
� = 0�, then 

�
� = 0� = /�£l � = /£l �
£l � = /£l � * /
£l � = /
N * 

/
(
N) = /
N * (/(
N))-1 
= 0 * 0

-1 
= 
�
� …           (41) 

or 0�  = /�∗(
N) = /�  = 1 or 	/
(�∗N	)  = (/�) -1 
= 1

-1 
= 1. 

Therefore, using this special number, conclusion is that 
�
� = 0�= 1. 

(xxi) The shifting method 

Suppose one has 
	F
�  = 3. There is a way one can shift all 

numbers to one side to have 
	F
�  * 

�
� = 

	F
�∗� = 1 or 

ª
� = z to have 

 
ª
� * 

�
� = 

ª
�∗� = 1…                           (42) 

Under no circumstances shall one have any other value, 

apart from 1, whenever one shifts all values to one side, 

through multiplication and division. If then one has 1 on one 

side, one can extend such results to have another form of the 

same as follows; 
ª
�  = z ⟹  z * 

�
ª  = 1. This means that 

whenever r = q, then z = 1. Not anything else! This is 

irrespective of whether r = q = 0 or anything else. 

(xxii) Proof of 
"
" = 1 using practical example 

Consider measurement of angles in a triangle. The 

trigonometric functions are the angles represented as ratios of 

lengths of right-angled triangles. Figure 6 is a right-angled 

triangle with angles 60° and 30°. The cosine of 60° is a ratio 

of the adjacent and hypotenuse sides, hence cos 60 = 
�
	 which 

means that, the ratio of these sides is always 1:2 for adjacent 

to hypotenuse. So, whether one increases the sides’ lengths or 

reduce them, and the angle is constant as 60°, then the ratio 

must remain as 1:2. I.e. 0.00001:0.00002, 1*10
-50

:2*10
-50

, 

1*10
-500

:2*10
-500

, 1*10
50

:2*10
50

, 1*10
500

:2*10
500

etc. Suppose 
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one reduces the ratio of sides by moving line FG towards line 

KH but parallel to line KH and all the other lines, through 

point J as shown in figure 3a below. At every point of the 

shift made, the degree is maintained as 60° at corner F of the 

triangle. The ratio of the lines is also maintained as 1:2 = 
�
	. 

Shift the line until it gets extremely close to point J and one 

realizes that, the ratio is still 1:2 but extremely small lengths 

of the lines whose ratios are being considered. i.e. 10
-

50b
:2*10

-50b
= 

�
	 (b is for billion). At point J, the ratio is still the 

same but the adjacent side is at 0 while hypotenuse is twice 

far away from 0 (the adjacent gets to point 0 just before 

hypotenuse does so). Therefore, the ratio is 0:0*2 = 
�
�∗	. And 

since the angle is still maintained as 60°, then one has cos 60 

= 
�
�∗	 ⇒ cos 60 = 

�
�∗	 = 

�
	 ⇒	 �� = 1. Past point J, the triangle 

turns to be on the other side of point J. Continuing with this 

process ends up mapping the triangle to points JKH with line 

FG becoming line KH. Even if one decides to shift the line 

past KH, the ratio is the same and angle is maintained. This 

process does not matter if one is shifting line FG towards 

point J or away from it. At any point, the ratio is the same. 

This helps verify that actually, 
�
�  = 1. If one indicates the 

lengths past point J as negatives, to denote direction, the 

results are similar. 

Figure 7 is a right-angled triangle with angles 45° and 45°. 

The tangent of 45° is a ratio of the opposite and adjacent 

sides, hence tan 45 = 
�.��
�.�� = 

�
� = 1 which means that, the ratio 

of these sides is always 1:1 for opposite and adjacent sides. 

So, whether one increases the sides’ lengths or reduces them, 

and the angle is constant as 45°, then the ratio must remain as 

1:1. I.e. 0.00001:0.00001, 1*10
-50

:1*10
-50

, 1*10
-500

:1*10
-500

, 

1*10
50

:1*10
50

, 1*10
500

:1*10
500

etc. Suppose one reduces the 

ratio of sides by moving line AB towards line DE but parallel 

to line DE and all the other lines, through point C as shown 

in figure 7 below. At every point of the shift made, the degree 

is maintained as 45° at corner A or B of the triangle. The ratio 

of the lines is also maintained as 1:1 = 
�
�. Shift the line until it 

gets extremely close to point C and one realizes that, the ratio 

is still 1:1 but extremely small lengths of the lines whose 

ratios are being considered, i.e. 10
-50b

:1*10
-50b

= 
�
�  (b is for 

billion). At point C, the ratio is still the same but the opposite 

side is at 0 while adjacent is also at 0 (the opposite and 

adjacent get to point C simultaneously). Therefore, the ratio 

is 0:0 = 
�
�. And since the angle is still maintained as 45°, then 

one has tan 45 = 
�
� ⇒ tan 45 = 

�
� = 

�
� ⇒	 �� = 

�
� = 1. Past point C, 

the triangle turns to be on the other side of point C. 

Continuing with this process ends up mapping the triangle to 

points CDE with line AB becoming line DE. Even if one 

decides to shift the line past DE, the ratio is the same and 

angle is maintained. This process does not matter if one is 

shifting line AB towards point C or away from it. At any 

point, the ratio is the same. This helps verify that actually, 
�
� = 

1. If one indicates the lengths past point C as negatives, to 

denote direction, the results are similar. 

In general: 

cos 45 = sin 45 = 
�
√	 = 

���T
�√	����T = 

���TT
�√	����TT = 

��H�T
�√	���H�T = 

��H�TTTT
�√	���H�TTTT = 

�
7√	8� = 

�
7√	8� …                (43) 

Equation (43) ⇒	 �� = 
�
� = 1. 

sin 30 = 
�
	 = = 

��ITT
�	���ITT = 

��¬TT
�	���¬TT = 

��H¬T
�	���H¬T = 

��HJTTTT
�	���HJTTTT = 

�
�	�� 

= 
�

�	�� …                        (44) 

Equation (44) ⇒	 �� = 
�
� = 1. 

cos 30 = 
√�
	  = 

�√����IOT
�	���IOT  = 

�√����­OTT
�	���­OTT  = 

�√����HIOT
�	���HIOT  = 

�√����H­¬TIOT
�	���H­¬TIOT  = 

7√�8�
�	��  = 

7√�8�
�	�� 	⇒ 	 �� = 

�
� = 1. 

tan 30 = 
�
√� = 

��I�TT
�√����I�TT = 

����TTTT
�√������TTTT = 

��H®�TT
�√����H®�TT = 

��HI�TT¬T
�√����HI�TT¬T = 

�
�√��� = 

�
�√��� …                              (45) 

Equation (45) ⇒	 �� = 
�
� = 1. 

And all the other angles, x, in the range 0° ¯ x ¯ 90° of a 

right-angled triangle. 

 

Figure 6. Right-Angled with 60°and 30°. 
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Figure 7. Right-Angled with 45° and 45°. 

Any other angle chosen and applied to any trigonometric 

function will work. 

4. Discussion 

In all cases where one is trying to test the solutions of x = 

0 and x = ∞, it’s found that both are following the same 

direction. I.e. if x = 0 and x = ∞, in method (xix), one finds 

that both allow only to compare the denominators. In method 

(xv), one has rn ≠ ∞ and rn ≠ 0 for x = 0 and x = ∞ cases 

respectively and both lead to contradictions. In method (xiv), 

one gets the conclusion that, ∞*0 = 0 and 0 ≠ 1, and, 0*∞ = 0 

and 0 ≠ 1, for x = 0 and x = ∞ respectively, which is one and 

the same thing. In addition, both show contradiction. In 

method (xvii), there is contradiction in every case involving 0 

and ∞ as the values of x. But in all of the above cases, one 

does not end up in confusion for anything to do with x = 1. 

In the negation method (xvii), one can suppose that 
�
� = 

�
� = 

0 or ∞. Then, one starts with 
�
� = 

�
� = 0 = y. Here, 0 - 

�
� = 0 –y 

⇒ 0 - 
�
� = –y ⇒ 

�∗�
�
�  = –y ⇒ 

���
��
�  = –y ⇒ 

�
� (0 – 1) = –y, 

but since y = 0 as was supposed, then one has 
�
� (0 – 1) = –0 ⇒ 0 – 1 = -0 ⇒ -1 = -0 or -1 = 0. But this is a contradiction 

because there is no time it shall be -1 = 0. Therefore, since -1 

≠ 0, then 
�
� = 

�
� ≠ 0. For the second case, one has 

�
� = 

�
� = ∞ = 

y. Here, 0 - 
�
� = 0 –y ⇒ 0 - 

�
� = –y ⇒ 

�∗�
�
�  = –y ⇒ 

���
��
�  = –y 

⇒ 
�
� (0 – 1) = –y, but since y = ∞ as it was supposed, then 

�
� 

(0 – 1) = –∞ ⇒ 0 – 1 = -∞ ⇒ -1 = -∞ or -1 = -∞. But this is a 

contradiction because there is no time it shall be -1 = -∞ or 1 

= ∞. Therefore, since -1 ≠ -∞, then 
�
� = 

�
� ≠ ∞. The last part in 

this method was about addition of 0 to a real number, i.e. x + 

0 = x is true. Then, let 
�
� = 

�
� = y. Let one suppose that y = 0 or 

∞. Then, 
�
� + 0 = y + 0. In case 1, let y = 0 hence 

�
� + 0 = y +0 

⇒	 ���∗��  = y ⇒ 
������

�  = y ⇒ 
�
� (1 + 0) = y ⇒ 1 +0 = y. But y 

= 0 hence, 1 +0 =0 ⇒ 1 = 0, which is a contradiction because 

one cannot have 1 = 0. So, since 1 ≠ 0, then 
�
� = 

�
� ≠ 0. In the 

second case, let y = ∞ hence 
�
� + 0 = y +0 ⇒ 

���∗�
�  = y ⇒ 

������
�  = y ⇒ 

�
� (1 + 0) = y ⇒ 1 +0 = y. But y = ∞ hence, 1 +0 

=∞ ⇒ 1 = ∞, which is a contradiction because 1 = ∞ is not 

true. So, since 1 ≠ ∞, then 
�
� = 

�
�  ≠ ∞. In other cases, one 

might have what can be termed as ‘cancellation illusion’ but 

one can use the knowledge of coefficients such as in method 

(x). In that method there are equations such as: 2 �
�  = 2y ⇒  

�
�  = y ⇒  (1) 

�
�  = y hence y = 1 (comparing 

coefficient of 
�
�). 

�O��
��
�O  = y(1 – 1) ⇒ 

�O
�O = y ⇒ �1� �O�O = y ⇒ 

y = 1 (comparing the coefficient of 
�O
�O). 

�O
�O = �	 ⇒	�1� �O�O = �	 ⇒ 1 = �	 ⇒ °y = °1 ⇒ y = 1 (comparing the coefficient 

of 
�O
�O). 

�O
�O =

!
! ⇒ (1) 

�O
�O =

!
! ⇒ 1 = 

!
! ⇒ 

�
� = 

!
! ⇒ y = 1 (comparing 

the coefficient of 
�O
�O). 

In method (vii), 
�
� = 

�
�O = 

�
�� = 

�
�� = 

�
�� = … ⇒ 

�
�(1) = 

�
� (

�
�) = 

�
�  (

�
�O ) = 

�
�  (

�
�� ) = 

�
�  (

�
�� ) = … Hence, comparing the 

coefficients, one gets: 1 = 
�
�  = 

�
�O  = 

�
��  = 

�
��  = … ⇒  x = 1. 

Trying to have x = 0 or x = ∞ will not work but only 

generates confusion. This is because, letting x = 0 or x = ∞, 

then one would have the following: 

Case 1: x = 0. Therefore, 1 = 
�
� = 

�
�O = 

�
�� = 

�
�� = … ⇒ 1 = 

�
�. 

This is false because, using limits, 
�
� tends to ∞, and 1 ≠ ∞. 

Case 2: x = ∞. Therefore, 1 = 
�
N = 

�
NO = 

�
N� = 

�
N� = … ⇒ 1 = 

�
N. This is false because, using limits, 

�
N tends to 0, and 1 ≠ 0. 

In method (iv), there is also a contradiction in taking x = 0 

or x = ∞. The two show that 0 ≠ ∞ and ∞ ≠ 0, respectively. 

Both follow the same path and are a conclusion of one not 

being the other and vice versa. Both exhibit a behaviour that 

is either similar or going in opposite direction. 

In the matrix method, it cannot be said that 
�
� = 0 or 

�
� = ∞ 

because such numbers along the main diagonal would never 

give identity matrices whatsoever. I.e. (0), $0 00 0( , 

<0 0 00 0 00 0 0= and (∞),$∞ 00 ∞(, <∞ 0 00 ∞ 00 0 ∞=. These cannot 

be identity matrices. 

In the first method (method (i)), 0 and ∞ would only cause 

conflicts among numbers because the left and right hand 

sides of the equations won’t agree. 

In method (ix), there was 
�
� = x ⇒ 

�lm�
�lm� = x ⇒ 

�
� = x ⇒ x = 

1. But if it’s assumed that x = 0 or x = ∞, then one would end 

up with 1 = 0 or 1 = ∞, which is not only false but also 

mathematically incorrect. 

In introducing trigonometric function, the result is the 

following general rule being represented by the cosine 

function: 
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�
� = 

�lm�
�lm� = 

nop	��lm��
nop	��lm�� = 

nop	[nop��lm��]
nop	[nop��lm��] = 

nop	{… nop[nop��lm��]}
nop	{… nop[nop��lm��]} … (46) 

E.g. for x = 50 and x = 90, then:  �
 � = 

�lm �
�lm � = 

nop	��lm ��
nop	��lm �� = 

nop	[nop��lm ��]
nop	[nop��lm ��] = 

nop	{… nop[nop��lm ��]}
nop	{… nop[nop��lm ��]}, 

and  

��
�� = 

�lm��
�lm�� = 

nop	��lm���
nop	��lm��� = 

nop	[nop��lm���]
nop	[nop��lm���] = 

nop	{… nop[nop��lm���]}
nop	{… nop[nop��lm���]}. 

5. Conclusion 

Having provided such strong proves that are substantial 

and all pointing towards one value, 1, it can be boldly 

concluded that 
�
�  = 1. This doesn’t matter what one might 

think zero to be. Whatever one thinks zero is, the division of 

that by itself is 1, to mean once. It can only be contained by 

itself once, as the two (numerator and denominator) are equal 

to each other. One cannot verify the results by trying to 

reverse the division process by multiplication because the 

two properties of zero are unique. No one can exhaust the 

proofs as new proofs are seen each day in whatever scenario. 

Division of non-zero numerator by zero as denominator is 

indefinite. 
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