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Abstract: The aim of this paper is to study the estimation of Pareto distribution on the basis of progressive type-II censored 

sample. First, the maximum likelihood estimator (MLE) is derived. Then the Bayes estimator of the unknown parameter of 

Pareto distribution is derived on the basis of Gamma prior distribution under entropy loss function. Further the empirical Bayes 

estimator also obtained by using maximum likelihood on the basis of Bayes estimator. Finally, the admissibility of a class of 

inverse linear estimators are discussed under suitable conditions. 
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1. Introduction 

In practical life testing experiments, considering with the 

time limitation and/or other restrictions (such as cost, 

material resources, etc.), the experimenter may not always be 

in a position to observe the life times of all the products in a 

lifetime test [1, 2]. Censored samples often arise in practice. 

Progressive Type II censored sampling test is one of the most 

important method of obtaining data in lifetime researches. 

The statistical inference studies for various distributions 

when sample belongs to progressive censoring have attracted 

many authors’ attention. For example, Ng et al. [3] computed 

the expected Fisher information and the asymptotic variance-

covariance matrix of the ML estimates based on 

progressively Type-II censored sample from Weibull 

distribution They also discussed the construction of 

progressively censored reliability sampling plans. Soliman et 

al. [4] investigated the point and interval estimations for the 

modified Weibull distribution based on progressively type-II 

censored sample. Yang [5] derived the maximum likelihood 

estimation of Weibull distribution under Type II progressive 

censoring with random removals, where the number of units 

removed at each failure time follows a binomial 

distribution.Wu [6] considered the estimation problem of the 

two-parameter bathtub-shaped lifetime distribution based a 

progressively type-II censored sample. Cho et al. [7] 

discussed the Bayes estimation of the entropy of a two-

parameter Weibull distribution based on the generalized 

progressively censored sample. Bhattacharya et al.[8] 

proposed an optimum life-testing plans under Type-II 

progressive censoring scheme using variable neighborhood 

search algorithm. Laumen and Cramer [9] discussed the 

likelihood inference and statistical test procedure for the 

lifetime performance index in the presence of progressive 

censoring. Khorram and Farahani [10] considered the 

maximum likelihood estimation and bayes estimation of 

parameters of weighted exponential distribution based on 

progressively Type-II censored sample. 

Many statistical inference problems have been discussed 

for various lifetime distributions, such as exponential 

distribution, Weibull distribution, etc. Wu and Chang [11] 

pointed out that Pareto distribution can be regarded as a 

suitable alternative distribution in modeling product’s 

lifetime. Statistical inference about Pareto distribution 

receives great attention by authors in recent yeasrs. For 

example, Raqab et al. [12] derived the best linear unbiased 
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predictors, maximum likelihood predictors and approximate 

maximum likelihood predictors of times to failure of units 

censored from Pareto distribution. Kulldorff and Vannman 

[13] obtained the best linear unbiased estimates based on the 

complete sample and the asymptotically best linear unbiased 

estimates based on a few selected order statistics. Fu et al. 

[14] discussed the Bayesian estimation of Pareto distributions 

under progressive Type-II censoring on the basis of several 

types of noninformative priors, i.e. Jeffreys prior, two 

reference priors and two general forms of second order 

probability matching prior. Saldaña-Zepeda et al. [15] 

proposed a goodness of fit test procedure for the Pareto 

distribution, when the observations drawn from Type II right 

censoring.  

Assume that the repair time X  follows the Pareto 

distribution with the following probability density function 

(pdf) and cumulative distribution function (cdf) respectively: 

( 1)( ; ) , 1, 0f x x xθθ θ θ− += > >                      (1) 

( ; ) 1 , 1, 0F x x xθθ θ−= − > >                      (2) 

This paper will discuss the Bayes estimation of the 

parameter of Pareto distribution under entropy loss function 

on the basis of progressive type-II censored sample. The 

admissibility of estimators is an important topic [16-19]. 

Thus this paper will also study the admissibility and 

inadmissibility of a class of inverse linear estimators under 

suitable conditions. The remains of this paper are organized 

as follows. The MLE and Bayesian estimators of the 

parameter are obtained in Section 2. In Section 3, the 

admissibility and inadmissibility of estimators with inverse 

linear form are discussed. A conclusion is finally made in 

Section 4. 

2. Preliminary Knowledge 

The progressively Type II censoring scheme can be 

described as follows [20].  

First, the experimenter places n units or individual on test. 

(i) When the first failure is observed at 1: :m n
X , then 

randomly select 1
r  surviving unites and remove them. 

(ii) When the i-th failure unit is observed at : :i m n
X , then 

randomly select i
r surviving unites and remove them. i = 2, 

3,...,m.  

(iii) This experiment terminates when the m-th failure unit 

is observed at : :m m n
X  and 1 1m m

r n m r r −= − − − −⋯ of 

surviving units are all removed. Here the censoring numers 

1 2 1
, , ,

m
r r r −⋯  are all pre-fixed. 

Remark 1. Note that if 1 2 1
0

m
r r r −= = = =⋯ , m

r n m= − , 

This censored scheme reduces to conventional type II right 

censoring scheme. Also note that if 

1 2 1
0

m m
r r r r−= = = = =⋯ , m n= , the progressively type II 

censoring scheme reduces to the complete sample case. 

This paper we always assume that 

1: : 2: : : :
( , , , )

m n m n m m n
X X X X= ⋯  is a progressively Type-II 

censored sample from a life test on n items whose lifetimes 

follows Pareto distribution with pdf shown in (1), 

1: : 2: : : :
( , , , )

m n m n m m n
x x x x= ⋯ is the corresponding observation of 

X and 1 2
, , ,

m
r r r⋯ denote the corresponding numbers of units 

removed from the test. 

2.1. Maximum Likelihood Estimation 

The likelihood function of θ  under given progressively 

type-II censored sample 1: : 2: : : :
( , , , )

m n m n m m n
x x x x= ⋯  is 

(Balakrishnan and Aggrwala [21]): 

1

( | ) ( ; )[1 ( ; )] i

m
r

i i

i

L x c f x F xθ θ θ
=

= −∏           (3) 

Here : :i i m n
x x≡  is the observation of : :i m n

X , 1,2, ,i m= ⋯ , 

( ; )f x θ  and ( ; )F x θ are given respectively by (1) and (2), and

1 1 2 1
( 1) ( 1)

m
c n n r n r r r m−= − − − − − − − +⋯ ⋯ .  

Substituting (1) and (2) into (3), the likelihood function is 

given by 

( 1)

1

1

11

( | ) [ ]

( ) exp[ (1 ) ln ]

i

m
r

i i

i

m m
m

i i i

ii

L x c x x

c x r x

θ θθ θ

θ θ

− + −

=

−

==

= ⋅

= ⋅ − +

∏

∑∏
      (4) 

Where : :i i m n
x x≡  is the observation of : :i m n

X , 1,2, ,i m= ⋯  

The natural logarithm of likelihood function is given by  

1

1 1

ln ( | ) ln ln (1 ) ln
m m

i i i

i i

L x c m x r xθ θ θ−

= =

= + + − +∑ ∑   (5) 

Then the MLE of θ  can is the solution of the following 

equation  

1

ln ( | )
(1 ) ( ) 0

m

i i

i

d L x m
r T x

d

θ
θ θ =

= − + =∑          (6) 

Thus the MLE of θ  can be easily solved as 

: :

1

ˆ

(1 ) ( )
MLE m

i i m n

i

m

r T X

θ

=

=
+∑

                      (7) 

2.2. Bayes Estimation 

This subsection will discuss the Bayes estimation of the 

parameter θ  of Pareto distribution (1) based on progressively 

Type-II censored sample under the following entropy loss 

function: 

ˆ ˆ
ˆ( , ) ln 1L

θ θθ θ
θ θ

= − −                        (8) 

Lemma 1. Let 1: : 2: : : :( , , , )m n m n m m nX X X X= ⋯  be a 

progressively type-II censored sample from a life test on n  
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items whose lifetimes have Pareto distribution (1), and 

1 2
, , ,

m
r r r⋯ denote the corresponding numbers of units 

removed from the test. Then under the entropy loss function 

(8), the unique Bayes estimator ˆ
Bθ  of θ  is (Wang et al. 

[22]): 

1 1ˆ [ ( | ]B E Xθ θ − −=                                (9)  

Suppose the prior distribution of θ  is Gamma 

distributions, ( , )α βΓ , with the following pdf  

1
( | , ) , 0

( )
e

α
α βθβπ θ α β θ θ

α
− −= >

Γ
               (10) 

where 0α >  and 0β > .  

It is easy to proved that the posterior distribution of θ  is 

also a Gamma distribution ( , )m tα βΓ + + , i.e. 

| ( , )X m tθ α βΓ + +∼ ,where 
1

(1 ) ln
m

i i

i

t r x
=

= +∑  and from 

Lemma 1, the unique Bayes estimator ˆ
Bθ  can be obtained as  

1 1 1ˆ [ ( | )] ( )
1

B

T
E X

m

βθ θ
α

− − −+= =
+ −

               (11) 

Where : :

1

(1 ) ln
m

i i m n

i

T r X
=

= +∑  

The Bayes estimator ˆ
Bθ  can be rewritten as  

11ˆ ( )
1 1

B T
m m

βθ
α α

−= +
+ − + −

                 (12) 

which has of the form 
1( )cT d −+  

Remark 2 The Bayes estimator in Eq. (11) is seen to 

depend on the prior parameter β . Then When the parameter 

β  is unknown, we can use the empirical Bayes approach to 

estimate it. From (1) and (10), the marginal pdf of X  can be 

derived as follows 

0 0

1 1

11

1

1

( | ) ( | ) ( | ) ( | ) ( | )

( ) exp[ (1 ) ln ]
( )

( )

( ) ( )

m m
m

i i i

ii

m

im
i

m x f x d L x d

c x r x e d

m
c x

t

α
α βθ

α

α

β θ π θ β θ θ π θ β θ

βθ θ θ θ
α

β α
α β

∞ ∞

− − −

==

−
+

=

= =

= ⋅ − +
Γ

Γ +=
Γ +

∫ ∫

∑∏

∏

 

Then based on ( | )m x β , we can get MLE of β as  

ˆ T
m

αβ = . 

Substituting β̂  for β  in the Bayes estimator (12), the 

empirical Bayes estimator of β  can obtained  

1

1

1 1ˆ ( )
1 1

[ ]
( 1)

EB
T T

m m m

m
T

m m

αθ
α α

α
α

−

−

= +
+ − + −

+=
+ −

          (13) 

3. Admissibility and Inadmissibility of 
1( )cT d −+  

In the following discussion, we always supposes that 

1: : 2: : : :
( , , , )

m n m n m m n
X X X X= ⋯  is a progressively Type-II 

censored sample from a life test on n  items whose lifetimes 

have Pareto distribution (1), and 1 2
, , ,

m
r r r⋯ denote the 

corresponding numbers of units removed from the test. 

Note that the MLE, Bayes estimator and empirical 

estimators obtained in Section 2 are all the special cases of a 

class of inverse linear estimators of the form 
1( )cT d −+ . In 

the rest of this section, the admissibility of these estimators 

will be discussed on the basis of their risks under the entropy 

loss function (8). Let 
1

1
c

m

∗ =
+

, : :

1

(1 ) ln
m

i i m n

i

T r X
=

= +∑ . 

For later use, we need the following result shown in 

Lemma 2. 

Lemma 2. The statistics : :

1

(1 ) ln
m

i i m n

i

T r X
=

= +∑ has Gamma 

distribution ( , )m θΓ . 

Proof. Let : :
ln

i i m n
Y Xθ= , 1, ,i m= ⋯ , then we can easily 

proved that 1 m
Y Y< <⋯ is a progressively type II censored 

sample distributed with the standard exponential distribution. 

Considering with the following transformations 

1 1

2 1 2 1

3 1 2 3 2

1 1 1

( 1)( )

( 2)( )

( 1)( )
m m m m

Z nY

Z n r Y Y

Z n r r Y Y

Z n r r m Y Y− −

=
 = − − − = − − − −


 = − − − − + −

⋯ ⋯

⋯

     (14) 

Viveros & Balakrishnan [23] showed that the generalized 

spacings 1 2
, , ,

m
Z Z Z⋯  are all independent and identically 

distributed (i.i.d.) as standard exponential with mean 1. 

Then we have 
2

1

2 ~ (2 )
m

i

i

Z mχ
=
∑ , that is  

1 1

: :

1

2

2 2 (1 )

2 (1 ) ln

2 ~ (2 )

m m

i i i

i i

m

i i m n

i

Z r Y

r X

T m

θ

θ χ

= =

=

= +

= +

=

∑ ∑

∑
 

Then it is easy to prove that the distribution of statistic T  

is ( , )m θΓ . 

Theorem 1 The inverse linear estimator 
1( )cT d −+  is 
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admissible, provided 0 c c∗≤ <  and 0d > . 

Proof. From the Bayes estimator in Eq. (12), we see that 

when 0α >  and 0β > , the coefficient of T  is between 0 

and c∗ , and the constant 
1n

β
α+ −

 is strictly bigger than 0. 

This proves that 
1( )cT d −+  is admissible for the case 

0 c c∗< <  and 0d > . For the case 0, 0c d= > , the estimator 
1( )cT d −+  is admissible since it is the unique estimator for 

which ( , ) 0R dθ =  when dθ = . 

Theorem 2 The inverse linear estimator 
1( )cT d −+  is 

admissible, provided c c∗= and 0d ≥ . 

Proof. We first consider the case c c∗= and 0d > . Letθ  

has the prior distribution ( )
k

π θ  with pdf 

1/k
1/ 1

( )= , 0, 0
(1/k)

k

k e k
βθβπ θ θ β− − > >

Γ
 

If A  is a nondegenerate convex subset of (0, )+∞ , then it 

is obvious that there exists a 0
k  such that ( )k

A
dπ λ λ ε≥∫  for 

some 0ε >  and all 0
k k≥ . 

In fact, 

1 1 1 1 1 1
1 1 1

(0,1) [1, )

k k k k k k

A A A
e d e d e dβθ βθ βθβ θ θ β θ θ β θ θ

− − −− − −

+∞
= +∫ ∫ ∫∩ ∩

 

When k → ∞ , we have
1

1kβ → . 

Then  

1 1 1
1 1

(0,1)

1
1

0
[1, )

1
[

2

], ( )

k k k

A A

k

A

e d e d

e d k k

βθ βθ

βθ

β θ θ θ θ

θ θ

− −− −

− −

+∞

≥ ⋅

+ ⋅ >

∫ ∫

∫

∩

∩

 

Let 
1 1

1 1

0
(0,1) [1, )

1
[ ]

2
k k

A A
e d e d

βθ βθε θ θ θ θ
− −− −

+∞
= ⋅ + ⋅∫ ∫∩ ∩

, 

Then the conclusion has been proved. 

The Bayes estimator with respect to prior distribution 

( )kπ θ  under the entropy loss function (8) can be derived as 

in (12) as 

1ˆ ( )
1 / 1

k

T

n k

βθ −+=
+ −

 

Let 
1ˆ( ) , ( , )

1
( )X F t

n

Tθ θβ −

−
+=  is the jiont probability 

density function of ( , )Tθ . 

Then 

1

1 1 1
( , )

(1 k ) ( )

nk
k n t

dF t e t e d dt
n

βθ θβ θθ θ θ− − − −= ⋅
Γ Γ

 

The difference of the Bayes risks with respect to ˆ
kθ  and θ̂  

is 

0 0

0 0

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )

ˆ ˆˆ ˆ
( ln 1) ( ln 1) ( , )

1
( ) ( , ) ( )

( )

k k k k

k k

r r EL EL

dF t

p k dF t q k
T

π θ π θ θ θ θ θ

θ θθ θ θ
θ θ θ θ

θ
θ β

+∞ +∞

+∞ +∞

− = −

= − − − − −

= −
+

∫ ∫

∫ ∫

 

Here 
1

( )p k
k

−= ,
1

( ) ln
1 1

n
q k

n k

−=
+ −

 and ( ) 0p k →  

( ) 0q k → , k → +∞  

For any prior Gamma distribution ( , )α βΓ  of θ , we have 

1
1

0 0

( 1) 1 ( 1) 1

0 0

( 1) 1

10

1 1
[ ] [ ]

( )

1

( ) ( )

[ ]
( ) ( )

( 1)

( ) ( )

( 1) ( ) 1

( ) ( ) 1

n
n t

n t n

n

n

E E
T T

t
e e d dt

t n

t e dt e d
n

n
e d

n

n

n n

α
θ α βθ

α
θ α βθ

α
α βθ

α

α

θ β θ
βθ θ θ

θ α
β θ θ

α
β θ θ

αθ
β α

α β

−+∞ +∞ − − −

+∞ +∞ − − − + − − −

+∞ + − − −
−

≤
+

= ⋅ ⋅
Γ Γ

= ⋅
Γ Γ

Γ −= ⋅
Γ Γ

Γ − ⋅ Γ= ⋅ = < +∞
Γ Γ −

∫ ∫

∫ ∫

∫

 

Thus ˆ ˆlim( ) )) 0( , ( ,
k k k

k
r rθ θπ π

→∞
− = ， 

Therefore, 
1( )cT d −+ is admissible for any 0β >  by 

Blyth's lemma. This proves that the inverse linear estimator
1( )cT d −+ is admissible for c c∗=  and 0d > . 

For the case c c∗= and 0d = , 
1( )c T∗ −
is the limit of Bayes 

estimator relative to the gamma prior ( , )α βΓ , as , 0α β → . 

It is easy to verify that the Bayes risk difference 
1 ˆ) ) )( ,( ( ,

k k B
c Tr r θπ π∗ − −  converges to zero as , 0α β → . 

Then we prove the admissibility of 
1( )c T∗ −
. 

Theorem 3 Let the parameter space be (0, )+∞ and the 

action space be [0, )+∞ . The inverse linear estimator 
1( )cT d −+ is inadmissible under the entropy loss function (8) 

whenever one of the following conditions holds: 

(i) 0c <  or 0d < ; 

(ii) 0 , 0c c d
∗< ≠ =   

(iii) c c∗> and 0d ≥  

Proof. For the case (i), because 
1( )cT d −+ takes on 

negative values with positive probability. Therefore 
1( )cT d −+  is dominated by the estimator 

1max(0,( ) )cT d −+ . 

Then (i) is proved. 

For the case (ii), the risk function of the estimator
1( )cT −
is 

1 1 1
( ) ) [ ln 1]

( ) ( )

1 1
(ln ) ln ln 1

( , T E
cT cT

E E T c
c T

R c
θ θ

θ
θ

θ − = − −

= + + + −
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Using Lemma 2, we have 

1

1
E

T n

θ=
−

, (ln ) ( ) lnE T nψ θ= − , 

where 
( )

( )
( )

n
n

n
ψ

′Γ=
Γ

. 

The derivative of the risk function with respect to c  is 

1

2

1 1 1 1 1/
( , ( ) ) (1 )

1 1

c
R T

c n c c nc
cθ −∂ = − + = −

∂ − −
 

Then
1( , ( ) ) 0R T

c
cθ −∂ <

∂
 where 

1
0

1
c c

n

∗< < =
−

, and

1( , ( ) ) 0R T
c

cθ −∂ >
∂

, where c c∗> . 

Thus the risk function of 
1( )cT −
 is minimized at the value

c c∗= . Hence the estimator 
1( )cT −

 is dominated by the 

estimator 
1( )c T∗ −
. Thus (ii) is proved. 

For the case (iii). Because 

1 1) , ( ) )

1 1 1 1
[ ln ]

( ) ( )
( ) ( )

( ,( ) (
c

cT d c T d
c

E
c ccT d cT d

c T d c T d
c c

R R

θ θ θ θ

θ θ
∗

− ∗ ∗ −

∗ ∗
∗ ∗

+ +

= − − +
+ + + +

−

 

Under the condition (iii), 1 0
c

c∗− < , then 

1 1) , ( ) )( ,( ) (
c

cT d c T d
c

R Rθ θ
∗

− ∗ ∗ −+ +−

1
{ [ (1 ) ln ]}

( )

c c
E

cT d c cθ ∗ ∗= − +
+

,

1
{(1 ) [ ] ln ]} ( ln 1) 0

c c c c
E n

cT c cc cθ

∗ ∗

∗ ∗≥ − + = − − >  

Therefore, 
1( ,( ) )R cT dθ −+ is minimized at c c∗= . Hence 

1( )cT d −+ is dominated by
1( )c T d∗ −+  in this case. 

Remark 3. The MLE ˆ
MLEθ and Bayes estimator ˆ

EBθ are 

inadmissible by using Theorem 3. They are both dominated 

by the generalized Bayes estimator 1ˆ ( )c Tθ ∗ −
∗ = . 

4. Conclusions 

This paper considers the estimation of the unknown 

parameter of Pareto distribution based on progressively type 

II censored samples. The MLE, Bayes estimator and 

empirical Bayes estimators are obtained. These estimators all 

belong to a class of inverse linear estimators with the form 

1( )cT d −+ , where : :

1

(1 ) ln
m

i i m n

i

T r X
=

= +∑ . The admissibility 

and inadmissibility of 
1( )cT d −+ are discussed. As a result, 

the MLE and empirical Bayes estimator are inadmissible. 
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