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Abstract: Let G be a graph on n vertices v,,v,,...,v, and let d(v,) be the degree of vertex v,. A graph G is defined to be

harmonic if (d(vl),d(vz),...,d(vn))t is an eigenvector of the (0,1) -adjacency matrix of G. We now show that there are 4

regular and 45 non-regular connected pentacyclic harmonic graphs and determine their structure. In the end we conclude that

all of c-cyclic harmonic graphs for 1 < ¢ <5 are planar graphs.
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1. Introduction

Let G=(V(G),E(G)) be a graph with | V(G) |=n vertices
VisVy,...,V, and | E(G) |- m edges. We say that G is c-cyclic,
whenever¢ =m—n+ p, which P is the number components
of G. In [1] B. Borovicanin and et al, studied the c-cycle
graphs for ¢ =1,2,3,4. All harmonic trees were constructed
in [8] and the number of walks counted on some harmonic
graph in [4, 5]. In [9, 10, 11] founded some result on
harmonic graphs.

In this paper we study the c-cycle graphs for ¢ =5. If the
graph G is connected and ¢ =0then G is a tree.

The following elementary properties of harmonic graphs
obtain of the spectra properties of graphs [2, 3, 6, 7]. Let
d(v,) be the degree of vertex v, for 1<i<n, that is the
number of the first neighbors of v,. Vertex of degree k is
called a k-vertex. Vertex of degree zero is called pendent.
The column-vector (d(vl),d(vz),...,d(vn))’ is denoted by

d(G) . The number of k-vertex denoted by n, and we have
ny =1 (1
ny =0 (2)

Definition 1. The adjacency matrix A(G)=[q;] is the

nxn matrix for which a, =1 if vy, UE(G) and a; =0

otherwise. Eigenvalues and eigenvectors of matrix A(G) is

called eigenvalues and eigenvectors of graph G .
Definition 2. A graph G is said to be harmonic if there
exists a constant A , such that

n=3,n,=0,n=3 3)
In other words
A(G)d(G) = Ad(G). 4)

Thus, graph G is harmonic if and only if d(G) is one of

its eigenvectors, theses graphs are called A -harmonic.
Equation (3) result that A is a rational number and equation
(4) implies that A is not proper fraction, they follows that A
must be an integer.

Example 1. A A -regular graph is a A -harmonic graph.

By summing the expressions (3) over all i =1,2,...,n we
have

> dw)d(»=21)=0 )

VOV (G)

equivalently

> k(k=A)n, =0. ©6)

k=0
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2. Some Aucxiliary Results

We have the follow results of [1].

Lemma 1.

i.  Let H be a graph obtained from G by adding to it an
arbitrary number of isolated vertices, then H is
harmonic if and only if G is harmonic.

ii. Any graph without isolated vertices is A -harmonic if
and only if all its components are A -harmonic.

iii. Let G be a connected A -harmonic graph. Then A is
greatest eigenvalue of G and its multiplicity is one.
Also if m >0 then A =1 and equality occurs if
and only if G =K,

From Lemma 2.1., it is enough to restrict our

considerations to connected non-regular graphs. In [8],
shown that for any positive integer A there is a unique

connected A -harmonic that is a tree and denoted by 71, .

A

T/] has A* =A% + A +1 vertices, of which one vertices is a

(A* = A +1) -vertex, (A —A+1) vertices are A -vertices and

(A—1)(A* =2 +1) vertices are pendant. Also in [1], shown
that the following lemmas:
Lemma 2.
a In a A -harmonic graph 1-vertex is adjacent to a
vertex of degree A .
b If a A -harmonic graph not regular, then it has a
vertex of degree greater than A .
¢ In a harmonic graph with n>2 | no l-vertex is
attached to any vertex of greatest degree.
Lemma 3.
The tree 7, is the unique connected non-regular 2-
harmonic graph.
Lemma 4.
If x is a vertex of a A -harmonic graph then

d(x)<A*=A+1. If d(x)=A>—=A+1then x belongs to a
tree T/] , otherwise d(x)<A>—-A+1.

Lemma 5: For the A -harmonic tree, n, =(A—1)n,. For
any other connected A -harmonic graph, n, <(A—-2)n, .

Lemma 6.

If G # 1T, be a connected c-cyclic A -harmonic graph with

A23,mm1c2%QP—2A+2y

Lemma 7.

Let v be a vertex of a A -harmonic graph such that
dW)>A>—3A+4,and let u be a vertex adjacent to V ,
then d(u) = A.

After then, we suppose that c-cyclic graphs are connected,
that is p =1 therefore m =n+c—1. By combining the

equalities (1) and (2) we get

D k(k=2)n, =2c=2. %)

k=0

3. The Main Result

Theorem 1.

There are exactly 45 non-regular connected pentacyclic
harmonic graphs, depicted in Figures 1- 17.

Proof:

Because of Lemma 6, if ¢ =5 then A cannot be greater
than 4. Since ¢ =5, therefore, m =n+4, on the other hand,
Lemmas 2 and 5, result that A cannot equal tol and 2, hence
A =3 or A =4. At the first, suppose that 1 =3.

By the Lemma 2.4 if A is the maximal degree in a
pentacyclic harmonic graph, then A< 6 and in case A =4by
Lemma 4 we have A<12. From Lemma 2 we the conclude
that only the following 11 cases need to be examined:

Case 1: A =3, A=6

Case 2: A =3, A=35

Case 3: A =3, A=4
Case 4: A =4, A=12
Case 5: A =4, A=11
Case 6: A =4, A=10
Case 7: A =4, A=9
Case 8: A =4, A=8

Case 9: A =4, A=7
Case 10: A =4, A=6
Case 11: A =4, A=5

Case I1: Lemma 5 implies that n, —n, 20. By means of
relation (7), for ¢ =5, we have

-n +n, +2n, +3n, +4n, =8 8
from which
2n, +3n,+4n, —8=n,-n, <0 )

and we can conclude that

l<sn,<2,n<l,n <2 (10)
from equation (1.6) we get
—2n, —2n, +4n, +10n, +18n, = 0. 1y

According to Lemma 7, the 5 and 6-vertices are adjacent
only to 3-vertices. Since (3) the two neighbors of every 3-
vertex, adjacent to a 6-vertex, must be a 1 and 2-vertex.
Therefore n, 26, n, 23, and consequently, n, +n, 29 . In
what follows we distinguish between 12 subcases:

Subcase 1:

n,=0,n,=0,n,=1,n+n,=9,n,=n +4

(12)

In this subcase, we have, n, = 6, n, = 3, n, =10,

n, =0, ng =0, n, =1. Each of the three 2-vertices must

be adjacent to two 3-vertices, and exacts of 4, 3-vertices
remains. Therefore there cannot exist a 3-harmonic satisfies
the condition (12).
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Subcase 2:

n,=Ln,=0,n,=Ln+n, =1L n,=n+2

(13)

The 4 and 6-vertices are adjacent only to 3-vertices and
therefore the number of 3-vertices is greater than or equal to
10. Because of 7, =23 we now have n, =n, —2=8. Then, in

this subcase we get
n =8 mn,=3,n,=10,n, =1, n, =0, n, =1

(14

the neighbors 3-vertex adjacent to 4-vertex has a 2-vertex, a
3-vertex, so we need at least 5, 2-vertices. This subcase also

impossible.
Subcase 3:
n,=2,n,=0,n,=Ln+n,=13,n,=n (15)
Similar arguments subcase 2, we have
n =10,n,=3,n,=10,n,=2,n, =0,n, =1 (16)

this graph is nonconnected, then this subcase is impossible.
Subcase 4:

n,=0,n,=1,n=Ln+n,=14,n, =n, +1

(17)

The 5 and 6-vertices are adjacent only to 3-vertices and
therefore the number of 3-vertices is greater than or equal to
11. Because of n, =3 we now have n, =n, —1=10. Then, in

this subcase we get

Table 1. Cases of n, =0,n, =l,n, =1, n +n, =14, n, =n, +1 .

n, n, n, n, n, ng

(@ 10 4 11 0 1 1
(b) 11 3 12 0 1 1

the only case (a) can occurs and its graph is as follows.

Figure 1. First member of a family of 3-harmonic graphs which ¢=5 and
A=6.

Subcase 5:

n,=1l,n,=ln,=1,n+n,=16,n, =n -1

(18)

Since 3-vertices adjacent to 4-vertex, 5-vertex, 6-vertex,
are distinct, so we need at least 15, 3-vertices, then n, 216.

It result that n, +n, =19 that impossible.
Subcase 6:

n,=2,n,=1,n,=1,n+n, =18 n,=n-3 (19)

Similar arguments Subcase 1.5 this subcase is impossible.
Subcase 7:

(20)

n,=0,n,=0,n,=2,n +n, =16, n, =n,
Since 3-vertices adjacent to 6-vertices are distinct, so we
need at least 12, 3-vertices and 6, 2-vertices, then n, 212 . It

result that n, +n, =n, +n, 218 that impossible.
Subcase 8:

n,=1,n,=0,n,=2,n+n,=20,n, =n-2 (21)
In this subcase we have n;=16 then n 218 and

n, +n, 221 that impossible.

Subcase 9:
n,=2,n,=0,n,=2,n+n,=22,n, =n -4 (22)

In this subcase we have 7,216 then n =220 and
n, +n, 223 that impossible.
Subcase 10:

n,=0,n,=1,n,=2,n+n,=23,n,=n,-3 (23)

In this subcase we have n; 217 therefore 17 220 and
n, +n, 226 that this is a contradiction.
Subcase 11:

n,=lLns=lLn =2,n+n, =25n=n-5 (24)
In this subcase we have n;221 thus 7 226 and

n, +n, 232 that this cannot happen.
Subcase 12:

n,=2,n,=1,n,=2,m+n,=27,n,=n-7 (25)

In this subcase we get 7,221 hence 7 =28 and
n, +n, 234 that impossible.

Case 2: A =3,A=5

Lemma 5 follows that n, —n, =2 0. Equations (6) and (7)
now became

—2n, —2n, +4n, +10n, +4n, =0, (26)
and
—-n, +n, +2n, +3n, =8. 27)
We have following subcases:
Subcase 13:
n,=0,n,=2,n+n,=10,n, =n +2 (28)

By the Lemma 7, every 5-vertex is adjacent only with 3-
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vertices. Therefore n, 210 and », =8, then we have

Table 2. Cases of n,=0,n,=2,n +n,=10,n;=n +2 .

Table 3. Cases of n, =0,n, =1, n, +n, =5n,=n+5 .

n, n, n, n, ny
(@ 8 2 10 0 2
(b) 9 1 11 0 2
(© 10 0 12 0 2

Case (b) does not hold, but for case (a) we have 3
harmonic graphs as follow:

Figure 2. First members of a family of 3-harmonic graphs which ¢=5 and
A=5.

and for case (c) we have 8 harmonic graphs as follow:

Figure 3. Second members of a family of 3-harmonic graphs which ¢c=5 and
A=5.

Subcase 14
n,=lLn,=2,n+n,=12,n, =n, (29)

In this subcase we have 7,214 then n 214 and

n, +n, 214 that impossible.

Subcase 15:
n,=2,n,=2,n+n,=14,n,=n -2 (30)
Since n; —n, 20 then this subcase is impossible.
Subcase 16:
n,=0,n,=1,n+n,=5n,=n +5 31)

In this subcase we have n, =5 then we have

nl n2 n3 n4 nS
(a) 0 5 5 0 1
(b) 1 4 6 0 1
(© 2 3 7 0 1
() 3 2 8 0 1
© 4 1 9 0 1
6 5 0 10 0 1

cases (b), (c) and (e) do not hold, but for case (a) we have 2
harmonic graphs as follow:

Figure 4. Third members of a family of 3-harmonic graphs which ¢=5 and
A=5.

for case (d) we have 1 harmonic graphs as follow:

Figure 5. Fourth members of a family of 3-harmonic graphs which c=5 and
A=5.

for case (f) we have 3 harmonic graphs as follow:

Figure 6. Fifth members of a family of 3-harmonic graphs which c¢=5 and
A=5.
Subcase 17:
n,=lLn,=Ln+n,=7,n =n+3 (32)

In this subcase we have n; 29 then 1, 26 and

Table 4. Cases of n,=1,ns=1,n +n,=7,n,=n +3 .

(b) 7 0 10 1 1
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since the neighbors 3-vertex adjacent to 4-vertex has a 2-
vertex, a 3-vertex, so we need at least 2, 2-vertices, then this
subcase is impossible.

Subcase 18:

n,=2,n,=Ln+n,=9,n =n+1 (33)
In this subcase we have n; 29 hence n, 28 and

Table 5. Cases of n, =2,n, =1, n +n, =9, n, =n +1.

Subcase 20:
n,=2,n+n,=4,n,=n +4 (37
equivalently

Table 7. Cases of n,=2,n, +n,=4,n, =n, +4 .

n, n, n, n, ng
(@) 8 1 9 2 1
(b) 9 0 10 2 1

n n, n, n,
(@) 0 7 7 2
(b) 1 3 5 2
(©) 2 2 6 2
(d) 3 1 7 2
(e 4 0 8 2

since some the neighbors 3-vertex adjacent to 5-vertex has a
2-vertex, a 3-vertex, so we need at least 2, 2-vertices, then
this subcase is impossible.

Case 3: A=3,0=4

Lemma 5 follows that n, —n, =2 0. Equations (6) and (7)
now became
—2n, —2n, +4n, =0, (34)
and
-n +n, +2n, =8 (35)

n,—n 20 results that 1<n,<4 and the other hand

n +n, =2n, then we have following subcases:
Subcase 19:
n,=Ln+n,=2,n,=n+6 (36)
Equivalently

Table 6. Cases of n, =1, n +n,=2,n,=n +6 .

(a) 1 1 7 1
(b) 2 0 8 1

©) 0 2 6 1

since the neighbors 3-vertex adjacent to 4-vertex has a 2-
vertex, a 3-vertex, so we need at least 2, 2-vertices, then
subcases (a) and (b) are impossible, but for case (c) we have
2 harmonic graphs as follow:

Figure7. First members of a family of 3-harmonic graphs which ¢=5 and
A=4.

for case (a) we have 3 harmonic graphs as follow:

Figure 8. Second members of a family of 3-harmonic graphs which c=5 and
A=4.

In subcase (b) we need at least 6, 3-vertices, then this
subcase is impossible, also subcases (d) and (e) are
impossible, but for case (¢) we have 3 harmonic graphs as
follow:

Figure 9. Third members of a family of 3-harmonic graphs which ¢=5 and
A=4.

Subcase 21:

n,=3,n+n,=6,n,=n+2 (38)

If any two 4-vertices of three 4-vertices be adjacent, then
n, =0, thus this manner cannot occurs. If just a 4-vertex

adjacent with the other 4-vertices, then we have 2 harmonic
graphs as follow:

Figure 10. Fourth members of a family of 3-harmonic graphs which c¢=5
and A=4.

if the only two 4-vertices of three 4-vertices be adjacent, then
we have 2 harmonic graphs as follow:
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Figure 11. Fifth members of a family of 3-harmonic graphs which ¢=5 and
A=4.

Subcase 22:
n,=4,n +n, =8, n, =n (39)

equivalently

Table 8. Cases of n,=4,n,+n,=8,n, =n, .

x
S

=
oS

x
N

(a)
(b)
()
(d)
(e)
®
()
(h)
(k)

© N U hA W= Oy
O = N W A L N 0 X
0 N AN A WD = O
L e e e

In above subcases we need to the even number of 3-
vertices, then these subcases (b), (d), (¢) and (h) are
impossible. For case (a) we have 4 harmonic graphs as
follow:

Figure 12. Sixth members of a family of 3-harmonic graphs which ¢=5 and
A=4.

for case (c¢) we have 3 harmonic graphs as follow:

Figure 13. Seventh members of a family of 3-harmonic graphs which c¢=5
and A=4.

for case (e) we have 2 harmonic graphs as follow:

Figure 14. Eighth members of a family of 3-harmonic graphs which ¢=5 and
A=4.

for case (g) we have 2 harmonic graphs as follow:

Figure 15. Ninth members of a family of 3-harmonic graphs which c¢=5 and
A=4.

and also for case (k) we have 3 harmonic graphs as follow:

Figure 16. Tenth members of a family of 3-harmonic graphs which c¢=5 and
A=4.

Case4: A =4,A=12

Lemma 5 follows that 2n, —n, =20 . Equations (6) and (7)
now became

—3n, —4n, =3n, +5n, +12n, +21n, +32n,

(40)
+45n, +60n,, +77n,, +96n,, =0,

and

—-n, +ny, +2n, +3n; +4n, +5n, +6mn,

(41)
+7n, +8n,, +9n,, +10n, =8.

Since 1, =1 and 2n, —=n, 20 then this case is impossible.

Case 5: A=4,A=11

Lemma 5 follows that 2n, —n, 20 . Equations (6) and (7)
now became

=3n, —4n, =3n, +5n, +12n, +21n,

(42)
+32n, +45n, +60n,, +77n,, =0,

and

—-n, +ny, +2n, +3n, +4n, +5n,

(43)
+6n, +7n, +8n,, +9n,, =8.

Because of #;; 21 and 2n, —n, 20 this cannot happen.

Case6: h=4, A =10

Lemma 5 follows that 2n, —n, 20 . Equations (6) and (7)
now became

=3n, —4n, =3n, +5n, +12n,

(44)
+21n, +32n, +45n, +60n,, =0,

and

—n, +n, +2n, +3n, +4n,

(45)
+5n, +6n, +7n, +8n,, =8.

Since 1, =1 and 2n, —n, 20 then (45) implies that
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n, =1 2n, =n, (46)
ny,=n,=ny=n, =ng =n, =0
and (45) results that 3n, +4n, =60 . Since vertices adjacent
to 10-vertex are 4-vertex then 7, 210 and 7, =20 . The
equation 3m +4n, =60 leads to n =20,n, =0,n, =10 .
This harmonic graph as follow:

Figure 17. First member of a family of 4-harmonic graphs which c¢=5 and
A=10.

Case 7: A=4,0=9
From Lemma 5 we get 2n, —n, 20 . Equations (6) and (7)

imply that
E’In_ \ 32_3114;5;012 7)
and
—n, +n, +2n, +3n, + .

4n, +5n, +6n, +7n, =8.

Because of 7, =1 and 2n,—n =0 the relation (48)
implies that

ny =1, 2n, =n, n, =1, ng = n,

=n, =ng =0 (49)
or

ny =1,2n, -1=n, n, =n,

=ng =n, =n; =0 (50)

and (47) results that 3n +4n, +3n, =45 . Since vertices
adjacent to 9-vertex are 4-vertex then n, 29 and n, 217 .
The equation 3n, +4n, +3n, =45 results that this case is

impossible.
Case 8: A =4,0=38

Lemma 5 leads to 2n, —n, 20 . From equations (6) and (7)

we get
—3n, —4n, —3n, +5n
+121nb +221n7 +332n8 5:0, 1
and
—-n, +n, +2n, +3n, +4n, +5n, +6n, =8, (52)
Since ng 21 and 2n, —n, 20 then (52) implies that
ng=12n,—n+n,=2,n,=n,=n, =0 (53)

and (51) implies that 3n +4n, +3n, =32 . Since vertices

adjacent to 8-vertex are 4-vertex so n, 28 and n, =14 . The

equation 3nm +4n, +3n, =32 results that this case is
impossible.

Case 9: A=4,A=7

From Lemma 5 we have 2n, —n, 20. Equations (6) and

(7) lead to

—3n, —4n, —3n, +5n, +12n, +21n, =0, (54)
and
—-n, +n, +2n, +3n, +4n, +5n, =8. (55)
Since 7, 21 and 2n, —n, 20 then (55) implies that
n, =1,2n,—n +n,+3n, =3,n, =0 (56)

and (54) results that 3n +4n, +3n, —5n, =21 . If n, =0
then vertices adjacent to 7-vertex are 4-vertex then n, =7
and n, 211, The equation 3n, +4n, +3n, =21 results that
this case is impossible. Also, if #; =1 then n, =0 and
2n, = n,, then since some of vertices adjacent to 7-vertex are
then 7,25 and n 210 . The
3n, +4n, =26 results that this case is impossible.

Case 10: A=4,A=6

Lemma 5 follows that 2n, —n, 20 . Equations (6) and (7)
now became

4-vertex equation

—3n,—4n, =3n, +5n, +12n, =0, (57)
and
-n, +n, +2n, +3n, +4n, =8. (58)
We have following subcases:
Subcase 23:
ng =1,2n, =n,, n, +3n, =4, (59)

—3n, —4n, =3n, +5n, +12=0

If ny=0 then n,=4 | n =n,=n, =0 therefore this
manner not occurs. If n; =1then n, =1 and 3n, +4n, =14 .
On the other hand 1, 24 thus 7, =8 that this contradiction

with 3, +4n, =14 Hence this manner also cannot occurs.
Subcase 24

ng =1,2n, =n, +1, n; +3n, =3,

(60)
—3n,—4n, =3n, +5n, +12=0

If ng =0 then ny =3, n, =1,n, =0,n, =1 therefore this
manner is impossible. If then n,=0 and
3n, +4n, =17 Also, n,=4 n 28 that this

contradiction with 31 +4n, =17 . Therefore this case also

ng =1

thus

cannot occurs.
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Subcase 25
ng =1,2n, =n, +2, n, +3n, =2, 61
—3n,—4n, =3n, +5n, +12=0
In this subcases 1, =2,n, =0, n,=2,n,=0,n, =2 then
this case is impossible.
Subcase 26
ng =1, 2n, =n, +3, ny +3n; =1, 62)
—3n, —4n, =3n, +5n, +12=0
In this subcases 7, =1,n, =0, n, =3,n, =0,n, =3 then
this case cannot happen.
Subcase 27
ng =1,2n, =n +4,n, +3n, =0, 63)

—3n,—4n, =3n, +5n, +12=0

In this subcases 7, =n; =0, 3n, +4n, =12 . Since vertices
adjacent to 6-vertex are 4-vertex then 7, 26 and 7, 28. So

this contradiction with 3n, +4n, =12 | Then this case is
impossible.
Subcase 28:

ng =2,2n, =n, ny, =n; =0,

64
3n, +4n, =24 64

since some vertices adjacent to 6-vertex are 4-vertex then
n,24 and n =8, n, =22 . That this contradiction with

3n, +4n, =24, then this case is impossible.

Case 11: A=4,A=5

Lemma 5 follows that 2n, —n, 20 . Equations (6) and (7)
now became

—3n, —4n, =3n, +5n, =0, (65)
and
—-n, +n, +2n, +3n, =8. (66)
3n,+4n, =5n,-3n,20 then we have following
subcases:
Subcase 29:
ns=1,n,=0,2n, =n +5,3n +4n, =5 (67)

Since vertices adjacent to 5-vertex are 4-vertex then
n, =5 and n, =5 that this contradiction with 3n, +4n, =5.

Hence this case is impossible.
Subcase 30:
ng=1,n,=1,2n, =n +4,3n +4n, =2 (68)

Since 7, 20 and 1, 20, hence this case cannot happen.
Subcase 31:

ng=2,n,=0,2n, =n+2,3n +4n, =10  (69)
Since some vertices adjacent to 5-vertex are 4-vertex then
n, 23 and n, =4 that this contradiction with 3n, +4n, =10.
Therefore this case is impossible.
Subcase 32:
ng=2,n,=12n,=n +1,3n +4n, =7 (70)
Some vertices adjacent to S5-vertex are 4-vertex then
n, 23 and n, =5 that this contradiction with 3n, +4n, =7.
Thus this case is impossible.
Subcase 33:
ng=2,n,=2,2n,=n,3n +4n, =4 (71)
Since some vertices adjacent to 5-vertex are 4-vertex then
n, 23 and n, =6 that this contradiction with 3n, +4n, =4.
Hence this case is impossible.
Definition 3:
A graph is planar if it can be drawn in a plane without
graph edges crossing.
Corollary 1:
All of c-cyclic nonregular harmonic graphs for ¢ <5 are
planar graphs.

4. Regular Harmonic Graphs

If a pentacyclic A -harmonic graph be regular then we
8

have = and n=2A+1, therefore we have the only

A=3,n=8. In this case we have 4, 3-harmonic graphs as
follow:

Figure 18. Connected regular pentacyclic harmonic graphs.

5. Conclusions

Let # r(c) and #nr(c) be denote the number of connected c-
cyclic regular and nonregular harmonic graphs, respectively,
for a fixed value c. According to fined results, the number of
harmonic graphs as follows.

Table 9. The number of harmonic graphs.

[ #r(c) #nr(c) Remark

0 1 [ A=1

1 o 0 A=2

2 0 0

3 1 4 A=3

4 2 18 A=3

5 4 45 A=3, A=4
=6 finite finite
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