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Abstract: Solution of Partial Differential Equations (PDEs) in some region R of the space of independent variables is a 

function, which has all the derivatives that appear on the equation, and satisfies the equation everywhere in the region R. Some 

linear and most nonlinear differential equations are virtually impossible to solve using exact solutions, so it is often possible to 

find numerical or approximate solutions for such type of problems. Therefore, numerical methods are used to approximate the 

solution of such type of partial differential equation to the exact solution of partial differential equation. The finite-volume 

method is a method for representing and evaluating partial differential equations in the form of algebraic equations [LeVeque, 

2002; Toro, 1999]. In the finite volume method, volume integrals in a partial differential equation that contain a divergence 

term are converted to surface integrals, using the divergence theorem. These terms are then evaluated as fluxes at the surfaces 

of each finite volume. Because the flux entering a given volume is identical to that leaving the adjacent volume, these methods 

are conservative. Another advantage of the finite volume method is that it is easily formulated to allow for unstructured meshes. 

The method is used in many computational fluid dynamics packages. 
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1. Introduction 

Differential equations are mathematical expressions that 

how the variables and their derivatives with respect to one 

or more independent variables affect each other in 

dynamic way. A partial differential equation is a 

differential equation in which the unknown function F is a 

function of multiple independent variables and of their 

partial derivatives or Equations involving one or more 

partial derivatives of a function of two or more 

independent variables is called partial differential 

equations (PDEs). The highest derivative in the partial 

differential equation is the order of the partial differential 

equation. A PDE is linear if the dependent variable and its 

functions are all of first order. A PDE is homogeneous if 

each term in the equation contains either the dependent 

variable or one of its derivatives. Otherwise, the equation 

is said to be non-homogeneous in the given partial 

differential equation. The equation of the form 

���, ����� + 
��, ����� + ���, ����� + 
��, ����  

+���, ���� +  ���, ��� = ���, ��                  (1) 

This is the general second order, linear and non-

homogeneous partial differential equation. The partial 

differential equation is classified as parabolic, hyperbolic and 

elliptic depending on the values of A, B and C in the above 

equation (1). That is if the discriminate defined by  ∆= 
� −
4�� > 0, then the above equation (1) is said to be hyperbolic 

partial differential equation. If the discriminate ∆< 0, then 

the equation is said to be elliptic partial differential equation 

and if the discriminate ∆= 0,then the equation is also said to 

be parabolic partial differential equation.  

PDEs are mathematical models of continuous physical 

phenomenon in which a dependent variable, say u, is a 

function of more than one independent variable, say y (time), 

and x (eg. spatial position). PDEs derived by applying a 

physical principle such as conservation of mass, momentum 

or energy. These equations, governing the kinematic and 
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mechanical behavior of general bodies are referred to as 

Conservation Laws. These laws can be written in either the 

strong of differential form or an integral form. 

2. Discretization of Partial Differential 

Equation by Using FVM 

The starting point for a finite-volume discretization is a 

decomposition of the problem domain Ω into a finite number 

of sub domains ���� = 1,2, … ,  �  called control volumes 

(CVs), and related nodes where the unknown variables are to 

be computed. The union of all CVs should cover the whole 

problem domain. In general, the CVs also may overlap, but 

since these results in unnecessary complications we consider 

here the non-overlapping case only. Since finally each CV 

gives one equation for computing the nodal values, their final 

number (i.e., after the incorporation of boundary conditions) 

should be equal to the number of CVs. Usually, the CVs and 

the nodes are defined on the basis of a numerical grid. For 

one-dimensional problems the CVs are subintervals of the 

problem interval and the nodes can be the midpoints or the 

edges of the sub-intervals. 

 

Figure 1. Definitions of CVs and edge (top) and cell-oriented (bottom) 

arrangement of nodes for One-dimensional grids. 

 

Figure 2. The indication for the place of nodes. 

In the two-dimensional case the CVs can be arbitrary 

polygons. For quadrilateral grids the CVs usually are chosen 

identically with the grid cells. The nodes can be defined as 

the vertices or the centers of the CVs often called edge or 

cell-centered approaches, respectively. For triangular grids, 

in principle, one could do it similarly, i.e., the triangles 

define the CVs and the nodes can be the vertices or the 

centers of the triangles. Here, the nodes are chosen as the 

vertices of the triangles and the CVs are defined as the 

polygons formed by the perpendicular bisectors of the sides 

of the surrounding the triangles. 

Definition: Finite Volume Method is a sub-domain method 

with piecewise definition of the field variable in the 

neighborhood of chosen control volumes. The total solution 

domain is divided in to many small control volumes which 

are usually rectangular in shape. The numerical solution that 

we are seeking is represented by a discrete set of function 

values {
Nuuuu ..............,.........3,2,1

} that approximate u at 

these points, i.e Nixuu ii ...,,.........2,1),( =≈ . In what follows, 

and unless otherwise stated, we will assume that the points 

are equally spaced along the domain with a constant distance 

∆� � ��!" � �� , � � 1,2, … …  #" . This way we will write 

)( 11 ++ ≈ ii xuu  �  �� ix 	  ∆��. This partition of the domain 

into smaller sub-domains is referred to as a mesh or grid. 

Using finite volume method, the solution domain is 

subdivided into a finite number of small control volumes by a 

grid that grid defines the boundaries of the control volumes 

while the computational node lies at the center of the control 

volume. 

Nodal points are used within these control volumes for 

interpolating the field variable and usually, single node at the 

center of the control volume is used for each control volume. 

The finite volume method is a discretization of the 

governing equation in integral form, in contrast to the finite 

difference method, which is unusually applied to the 

governing equation in differential form. In order to obtain a 

finite volume discretization, the domain Ω will be Sub 

divided into M sub-domains %� such that the collection of all 

those sub domains forms a partition of Ω, that is: 

1. Each 
iΩ  is an open, simply connected, and polygonal 

bounded set without slits 

2. There is no any common point between each sub 

domains. (i.e. 
ji Ω∩Ω = Φ for ji ≠  

3. The union of all the sub-domain gives the domain of the 

region. (i.e. 
∪
M

i

i Ω=Ω ). These sub domains 
iΩ  are called 

control volumes or control domains.  

In the cell-centered methods, the unknowns are associated 

with the control volumes, for example, any control volume 

corresponds to a function value at some interior point. In the 

cell-vertex methods, the unknowns are locating at the 

vertices of the control volumes. 

 

Figure 3. a: Vertex-centered FVM, b: Cell centered FVM. 

Example 1: Consider the homogeneous Dirichlet problem 

for the Poisson equation on the unit square 

Ω∂=
=Ω=−

onxu

infxu xx

,0)(

)1,0(,)( 2

                       (2) 

The following figure shows that Problem variables and 

control volumes in a cell-centered finite volume method. 

Problem variables: Function values at the nodes ia  of a 
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square grid with mesh width 0>h .  

Control volumes: haxx ii <−Ω∈=Ω ∞\\:{ }. 

 

Figure 3. Cell centered FVM. 

For an inner control volume Ω∈Ω ii aei .,( , the above 

equation becomes as follow. ∫∑ ∫ Ω
=

Γ
=−

iijk

dxxfdpuv
k

xxijk )(
4

1

 

Where jkiijk Ω∂∩Ω∂=Γ . Approximating the integrals on 

ijkΓ  by means of the midpoint rule and replacing the 

derivatives by difference quotients, we have 

∑

∑∑∫

=

=
Γ

−=
+−+−−+−

−

≈
+

−≈−

4

1

4321

4

1

)()(4
)]()()()()()()()(

[

2

)(

k

jki

jijiijij

jki

xxijk

k

xxijk

auau
h

hauauauauauauauau

haa
uvdpuv

ijk

 

and we can approximate the right hand side by using the mid-

point rule. If Ω∂∈ia , then parts of the boundary iΩ∂  lie 

on ∂Ω. At these nodes, the Dirichlet boundary conditions 

already prescribe values of the unknown function, and so 

there is no need to include the boundary control volumes into 

the balance equations. 

In order to approximate the value of the solution of partial 

differential equation by finite volume method we use the 

following steps. 

Step 1: Grid Generation: The first step in the finite volume 

method is grid generation by dividing the domain in to 

discrete control volumes. Let us place a number of nodal 

points in the space between the points. The boundaries of 

control volumes are positioned mid-way between adjacent 

nodes. Thus each node is surrounded by a control volume or 

cell. It is common practice to set up control volumes near the 

edge of the domain in such a way that the physical 

boundaries coincide with the control volume boundaries. A 

general nodal point defined by and its neighbors in a one-

dimensional geometry. 

Step 2: Discretization: The most important features of 

finite volume method are the integration of the governing 

equation over a control volume to yield a discretized 

equation at its nodal points  

 

Figure 4. Discretization of the domain. 

Step 3: Solution: After discretization over each volume 

method, we are finding a system of algebraic equation which 

is easily solved by numerical methods. 

3. Formulation of Finite Volume Scheme 

of One Dimensional Elliptic PDEs 

The principle of the finite volume method will be shown 

here on the academic Dirichlet problem, namely a second 

order differential operator without time dependent terms and 

with homogeneous Dirichilet boundary conditions. Let f be a 

given function from (0, 1) to IR, consider the following 

differential equation: consider the equation of the form 

&����� = '���, � ( �0.1) with the boundary condition  

��0� � 0, ��1� � 0                        (3) 

Let ' ( ��)0, 1*, +,�  there exists a unique solution  � (
-��)0,1*, +,� to the Problem (3.1). In the sequel, this exact 

solution will be denoted by � and (3.1) can be written in the 

conservative form div (F) = f, with F = �� . In order to 

compute a numerical approximation to the solution of this 

equation, let us define a mesh or grid, denoted by T, of the 

interval (0, 1) consisting of N cells or control volumes, 

denoted by .� , � 1,2, … …   and N points of (0,1), denoted 

by �� , � � 12,3 … … .  , satisfying the following definitions: 

Definition: An admissible mesh of (0, 1), denoted by T, is 

given by a family 
∗∈= NNNik i ,,........3,2,1,  such 

that  .� � 0��#1
2
, ��!1

2
3  and a family 1,........2,1,0),( += Nixi  

with �4 � 0, �1
2

� �" � �5
2

�, … … ��#1
2

� �� � ��!1
2

�
, … . �6!1

2
� �6!" � 1  and the step size has the following 

properties 
Nixxkmh

ii
ii ,........3,2,1,)(

2

1

2

1 =−==
−+ and 

therefore 1
1

=∑
=

N

i

ih  also we have 
2

1−

− −=
i

ii xxh
 and 

Nixxh i
i

i ,.........2,1,
2

1 =−=
+

+
. Size of the mesh, denoted 

by, size (T) =h =max { 7�,� � 1,2,3,  � . The discrete 

unknowns are denoted Niui ,.......3,2,1, =  and are expected 

to be some approximation of u in the cell ik  (the discrete 

unknown iu  can be viewed as an approximation of the mean 

value of u  over ik  or of the value of )( ixu  or of other 
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values of u in the control volume ik . The first equation of 

(3) is integrated over each cell yield the following. 

�� 0��!1
2
3 − �� 0��#1

2
3 = 8 '���9�:; . 

After integration we get the following expression. 

Nidxxfxuxu
iki

x
i

x ...,.........3,2,1,)()()(
2

1

2

1 ==+− ∫−+
. (4) 

The Dirichlet boundary conditions are taken into account 

by using the values imposed at the boundaries to compute the 

fluxes on these boundaries. Taking these boundary conditions 

into consideration and setting '� = "
<; 

8 '���9�:;  for i = 1, 

2…,N in an actual computation, an approximation of '�  by 

numerical integration of mid-point rule can be used. 

The finite volume scheme for the problem (3) can be 

written as follows, 

��!1
2

− ��#1
2

=  ℎ�'�, For i = 1, 2, … , N.               (5) 

Where 

��#1
2 B 

C;DC;D1
E;D1

2

 for i = 1, 2, … , N −                        (6) 

�1
2

= #G1
<1

2
                                        (7) 

�6!1
2

=  GH
<HI1

2
                                   (8) 

The equation in (6) –(8) can be written as 

2

1

1

2

1

+

+

+

−
=

i

ii

i h

uu
F

 for i=0, 1,2,….,N                (9) 

By setting  

�4 = �6!" = 0                             (10) 

The numerical scheme (5)-(8) may be written under the 

following matrix form: 

AU = b,                                 (11) 

Where  & = (�", . . . , �6)J , K = (K1, . . . , K6)J  ,  with (10)   
and with � and K defined by  

i

i

i

ii

i

ii

i

i
h

wherebNi
h

uu

h

uu

h
AU

1
.,.....3,2,1),(

1
)(

2

1

1

2

1

1 ==
−

−
−

=
−

−

+

+

 

Example 2: Consider the second order one-dimensional 

linear elliptic problem: 

)1,0(,sin)( ∈−= xxxuxx
, with boundary conditions: 

017452406.0)1(,0)0( == uu  

The exact solution of the problem is �(�) = L�M� 

Solution Now to solve the above problem, integrating 

equation (3) over each control volume (��!1
2
 , ��#1

2
)  and 

considering  ℎ = 0.05 , i=1, 2, 3,…,19. The finite scheme 

related to (3) is given by 20 ��!" − 40�� + 20��#" 

=cos 0��!1
2
3 − cos 0��#1

2
3 , � = 1,2, … . ,19. 

Table 1. Numerical results for example (2) by using FVM. 

i RS TS Exact solution Absolute error 

0 0 0 0 0 

1 0.05 0.0009 0.000872664  0.000027336 

2 0.1 0.0018 0.001745328  0.000054672 

… … … … … 

20 1.0 0.017452406 0.017452406 0 

Theorem 1: Let ' ∈  �([0, 1], +,)  and let � ∈
-�([0, 1], +,) be the unique solution of Problem (3). UVW X =
(Y�)� = 1, . . . ,   be an admissible mesh in the case of the 

above definition. Then, there exists a unique vector U = 

(�",………..,�6)J ∈ +,6  be the solution to (5) - (8) and there 

exists � ≥ 0, only depending on �, such that, 

∑ (\;I1_\;)2
<;I1

2

6�B4  ≤ ��ℎ�,                         (12) 

And V� ≤ �ℎ, ∀�(1,2,3, … … … ,  )                (13) 

with V4BV6!" = 0 and V� = �(��) − �� 

Table 2. Error estimate of one-dimensional elliptic problem by using 

theorem 1 of Table 1. 

I 
(cS!d − cS)

eS!d
f

f
 abs(cS) 

0 0.000000014 0 

1 0.000000014 0.000027336 

2 0.000000026 0.000054672 

… … … 

19 0.000000008 0.000020132 

Now to estimate the error using the equation (13) implies 

c=0.1 

Then ∑ (\;I1#\;)�
<;I1

2

"g�B4 ≤ 0.000025 hM9 hK(V�) ≤ 0.005, � =
1,2, … ,   

4. Finite Volume Method for Two 

Dimensions of Elliptic PDEs 

4.1. Formulation of Finite Volume Method for Linear 

Systems of PDEs 

This section is concerned with the discretization of linear 

system of two dimensions of elliptic partial differential 

equation by finite volume method (FVM) on Ω = (0, a) × 

(0,a) with rectangular meshed and let Ω be an open bounded 
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polygonal subset of IR
2
 and admissible finite volume mesh of 

Ω, denoted, by T is given by a family of control volumes 

which are open polygonal convex subset of Ω. 

Consider the partial differential equation of the form 

���(�, �) + ���(�, �) = '(�, �), (�, �) ∈ Ω            (14) 

�(�, �)  = 0 where (�, �) is included in the boundary of 

the domain 

Let Ω = (0, a) × (0, a) andf1,f2,∈ C 
2
(Ω, R) and let 

X =  (.�,j)� = 1, 2, … ,  ";  l = 1, 2, … ,  �; be an admissible 

mesh of ),0(),0( aa ×  that satisfying the following 

additional assumption.  

0.,.........,,0........,.........,
21 2121 >> NN kkkhhh , Such 

that ∑∑
==

==
21

11

1,1
N

j

j

N

i

i kh and let  

 ℎ4  = 0, ℎ61!" =0 and  .4 = 0 , .62!" = 0 . For

1..,.........2,1 Ni = . Let �1
2

= 0 and  

 ��!1
2

= ��#1
2

+ ℎ� , so that 1
2

1
1

=
+

Nx  and for j=1, 

2,…… ,N2 

y1
2

= 0 , yn!1
2

= yn#1
2

+ kn , so that yp�!1
2

= 1  and kq,n =
rxq#1

2
 , xq!1

2
t × [yn#1

2
, yn!1

2
] 

Let v�Wℎ, wxqx, i = 0,1,2, , N"!1 yynz, j = 0,1,2, … … . , N� +
1 such that xq#1

2
< xq  < xq!1

2
 for 

 i = 1,2 ,…….,  " + 1  and �4 = 0 , �61!"  =1.Similarlly 

�j#1
2

< �j < �j!1
2
 '|} 

 � = 1,2, ,  � + 1  and �4 = 0 , �62!" = 1  and let 

��,j =(�� , �j) '|} � = 1,2, … … … … … ,  " , l = 1,2, ,  �. 

Set ℎ�# = �� − ��#1
2
 , ℎ�! = ��!1

2
− ��  '|} � = 1,2, ,  "  with 

ℎ�!1
2

= ��!" − ��  
∀�∈ (0,1,2, … . ,  ") . Similarly, .j# = �j − �j#1

2
 , .j! =

�j!1
2

− .j , j=1,2…..,N2 , .j!1
2

= �j!" − �j  for j=0,1,…….., 

N2. )},.......2,1(),........,.........3,2,1,max{( 21 NjkNihh ji ===
 

Theorem 2:
 

Let Ω =( ��#1
2
, ��!1

2
) × ( �j#1

2
, �j!1

2
) be the 

domain and f ∈ ��(Ω), let u be th unique variational solution 

of elliptic partial differential equation. Let ~ > 0 be such that
  ℎ� > ~ℎ '|} � = 1,2,3 , . ,  � .Then there exists unique 

solution
21 ....,.........2,1,...,.........2,1, NjNiuij == such that 

the formula ��!1
2,j + ��#1

2,j + ��,j!1
2

+ ��,j#1
2

= ℎ�,j'�,j holds. 

Example 3: Consider the boundary value problem of 

elliptic problem of Sine-Gordon’s equation  

u��(x, y) + u��(x, y) − sin u(x, y) =  −sinx,  
0 ≤  x ≤ 1, 0 ≤  y ≤ 1                      (15) 

u(x, 0) =  x, u(x, 1) =  x, 0 ≤  x ≤  1            (16) 

u(0, y)  =  0, u(1, y)  =  1, 0 ≤  y ≤  1 

The exact solution of the problem is �(�, �)  =  �. with h = 

k = 0.2, after integrating over the control volumes .�,j =
0��#1

2
, ��!1

2
3 × 0�j#1

2
, �j!1

2
3 one can get the following. 

004.0sin04.0)),(),(()),(),(( ,
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And by using finite difference a method, we have 

004.0sin04.0)()()()( ,1,,

2

1

,1,

2

1
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2
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By using mid- point rule and FDM, the finite volume 

scheme gives the following. 

��!",j − 4��,j + ��#",j + ��,j!" + ��,j#" − 0.04L�M��,j
= 0.004 

in terms of iteration we have 

��!",j:� − 4��,j:� + ��#",j:� + ��.j!":� + ��,j#":� − 0.04L�M��,j = −0.004 

The following results are obtained from solution of the 

finite volume scheme related to problems (15) and (16). 

Table 3. Comparison between the numerical and exact solutions of the example 3 by using FVM with k0 = 1. 

I RS TS,d
(d)

 TS,f
(d)

 TS,�
(d)

 TS,�
(d)

 Exact solution Abs(�. � − TS,�
(d)) 

0 0 0 0 0 0 0 0 

1 0.2 0.2238 0.2326 0.2326 0.2238 0.2000 0.0238 

… … … … … … … … 

5 1 1.0000 1.0000 1.0000 1.0000 1.0000 0 
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and the following solution is obtained for .4 = 2: 

Table 4. Comparison between the numerical and exact solutions of the example 3 by using FVM with k0 = 2. 

I RS TS,d
�f�

 TS,f
�f�

 TS,�
�f�

 TS,�
�f�

 Exact solution Abs(Exact-TS,�
�f�� 

0 0 0 0 0 0 0 0 

1 0.2 0.2039 0.2055 0.2055 0.2039 0.2000 0.0039 

… … … … … … … … 

5 1 1.0000 1.0000 1.0000 1.0000 1.0000 0 

Also the following solution is obtained .4 = 3 

Table 5. Comparison between the numerical and exact solutions of the example 3 by using FVM with k0 = 3. 

I RS TS,d
���

 TS,f
���

 TS,�
���

 TS,�
���

 Exact solution Abs(Exact-TS,�
���� 

0 0 0 0 0 0 0 0 

1 0.2 0.2032 0.2044 0.2044 0.2032 0.2000 0.0032 

… … … … … … … … 

5 1 1.0000 1.0000 1.0000 1.0000 1.0000 0 

 

Now using the data that are given in the three tables, we 

can draw the figure on the same coordinate axes as follow 

 
Figure 5. The numerical and exact solutions of example (3) by using FVM. 

4.2. The Formulation of Finite Volume Method of 

Nonlinear System of Two Dimensions of Elliptic 

Partial Differential Problems 

Since the finite volume method (FVM) for nonlinear two-

dimensional elliptic problem of PDE is difficult to be used 

directly; thus the Newton’s method used to overcome such 

computational difficulties. This method is used to find the 

nonlinear partial differential equation. In these case the 

functional iteration is written as: 

����� � ����#"� � � �W���#"�#"� ������#"��      (17) 

Where  

���� � �'"��"", ��", … , ���, �"", ��", … , ����, 

'���"", ��", … , ���, �"", ��", … , ����, …, 
'���"", ��", … , ���, �"", ��", … , �����W 

����� � ��""
����, ��":� , … ���:� , �"":� , ��":� , … , ���:�� J 

Where 

 

Where J(W) is the M u M Jacobian matrix.  

Example 4: Consider the boundary value problem of two-

dimensional elliptic problem: 

�����, �� 	 �����, �� � ���, �����, �� 

�  �������� 	 ��� 	 4, � ( �0,1�, � ( �0,1�        (18) 
�����, �� 	 �����, �� � ����, ��  

� ���� 	 ���� 	 2��� 	 ���, � ( �0,1�, � ( �0,1�    (19) 
with boundary conditions 

��0, ��  �  ��, ��1, ��  �  1 	 �� , 0 ^  � ^  1  
��0, �� �  0, ��1, �� �  ��, u�x, 0� �  x�, u�x, 1�

�  1 	  x� , 0 ^  x ^  1 

���, 0�  �  0, ���, 1�  �  �� 
The exact solution of the problem is  ���, ��  �  ��  	

 ��, ���, ��  �  ����. 
With 7 �  0.2, . �  0.2, we have:  
Now, integrating equations (18) and (19) over each control 

volume. 

The results of the above integral are given by: 
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After some computations, we have the following expression. 

��!",j − 4��,j + ��#",j + ��,j!" + ��,j#" − 0,04��,j��,j = 0.1545 

��!",j − 4��,j + ��#",j + ��,j!" + ��,j#" − 0.04��,j� = 0.0105 

We can write the above equation in terms of iteration as follow. 

��!",j:� − 4��,j:� + ��#",j:� + ��,j!":� + ��,j#":� − 0.04��,j��,j = 0.1545 

��!",j:� − 4��,j:� + ��#",j:� + ��,j!":� + ��,j#":� − 0.04��,j� = 0.0105 

Moreover we have the following values of �. 

�4,4 = 0 , �4," = 0.04 , �4,� = 0.16 , �4,� = 0.36 , �4,� = 0.64 , �4,� = 1 
�",4 = 0.04 , ��,4 = 0.16 , ��,4 = 0.36 , ��,4 = 0.64 , ��,4 = 1 

Also the values of � are evaluated as follows. 

�4,4 = �4," = �4,� = �4,� = �4,� = �4,� = 0 and �".4 = ��,4 = ��,4 = ��,4 = ��,4 = 0 

The following results are obtained. 

Table 6. Numerical results for example (4) by using FVM when k0=1. 

I RS T�,dd  T�,fd  T�,�d  T�,�d  Exact-solution Abs(exact-TS,�d ) 

0 0 0 0 0 0 0 0 

1 0.2 0.1053 0.2304 0.4249 0.6937 0.6800 0.0137 

… … … … … … … … 

5 1 1.04 1.16 1.36 1.64 1.64 0 

Table 7. Comparison between the numerical and exact solutions of example (4) by using FVM when k0= 1. 

I RS �S,d
(d)

 �S,d
(d)

 �S,d
(d)

 �S,d
(d)

 Exact-solution Abs(exact-�S,�
(d)) 

0 0 0 0 0 0 0 0 

1 0.2 0.0244 0.0384 0.0466 0.0489 0.0256 0.0233 

… … … … … … … … 

5 1 0.04 0.16 0.36 0.64 0.64 0 

Table 8. Numerical results for example (4) by using FVM when k0=2. 

I RS TS,d
(f)

 TS,f
(f)

 TS,�
(f)

 TS,�
(f)

 Exact solution Abs(exact-TS,�
(f)) 

0 0 0 0 0 0 0 0 

1 0.2 0.0839 0.1917 0.3935 0.6772 0.6800 0.0028 

… … … … … … … … 

5 1 1.04 1.16 1.36 1.64 1.64 0 

Table 9. Comparison between the numerical and exact solutions of example 4 by using FVM when k0=2. 

I RS �S,d
(f)

 �S,f
(f)

 �S,�
(f)

 �S,�
(f)

 Exact solution Abs(exact-�S,�
(f)) 

0 0 0 0 0 0 0 0 

1 0.2 0.0079 0.0210 0.0350 0.0441 0.0256 0.0185 

… … … … … … … … 

5 1 0.04 0.16 0.36 0.64 0.64 0 
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Using the above set of data we can draw the figure of exact versus numerical solution. 

 

Figure 6. Numerical and exact results for u, k = 1, 2 of example (4) by using FVM. 

 
Figure 7. Numerical and exact results for v, k = 1, 2 of example (4) by using FVM. 
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4.3. Error Estimates of Two Dimensional Elliptic Problem of Dirichlet Boundary Conditions 

Theorem 3: Let Ω = (0, 1) × (0, 1) be the domain and f ∈ -�(Ω). Let u be the unique variation solution to equation (17). 

Under the assumptions of equation (18). Let ~  > 0 be such that 
21 ...........2.1,,,........2,1, NjhKNihh ji =>=> εε . Then, 

there exists a unique solution ��,j  , � = 1,2, … … .  " hM9 l = 1,2, … …  � Moreover, there exists C > 0 only depending on u, Ω 

and ~ such that we have, 

∑ (\;I1,�#\;,�)
<;I1

2

�
�,j .j + ∑ (\;,�I1#\;,�)2

:�I1
2

�,j ℎ� ≤ �ℎ�                                                 (20) 

And  

∑ (V�,j)��,j ℎ�.j ≤ �ℎ�                                                                                      (21) 

Where  V�,j = ����,j� − ��,j  , '|} � = 1,2,  " , l = 1,2, … ,  �. 

The application of the above theorem to estimate the error of two-dimensional elliptic problem followed in example 2. 

Table 10. Error estimate of two-dimensional elliptic problem by using theorem 3 of Table 6. 

i RS 
(cS!d,d − cS,d)

eS!d
f

f
�d 

(cS!d,f − cS,f)
eS!d

f

f
�f 

(cS!d,� − cS,�)
eS!d

f

f
�� 

(cS!d,� − cS,�)
eS!d

f

f
�� 

0 0 0.00056644 0.00106276 0.00106276 0.00056644 

1 0.2 0.00002116 0.00005625 0.00005625 0.00002116 

… … … … … … 

4 0.8 0.00017689 0.00036481 0.00036481 0.00017689 

Table 11. Error estimate of table (5) by using theorem (3) when k0=1. 

i RS 
(cS,f − cS,d)f

��
f

eS 
(cS,� − cS,f)f

��
f

eS 
(cS,� − cS,�)f

��
f

eS 
(cS,� − cS,�)f

��
f

eS 

0 0 0 0 0 0 

1 0.2 0.00007744 0 0.00007744 0.00080656 

… … … … … … 

4 0.8 0.00003364 0 0.00003364 0.00017689 

Now to estimate the error, equation (20) implies that C=0.2 and h=0.2. Then, we have 

∑ (\;I1,�#\;,�)2
<;I1

2
�,j .j + ∑ (\;,�I1#\;,�)2

:�I1
2

�,j ℎ� ≤ 0.008 and hence we have also,∑ (V�,j)��,j ℎ�.j ≤ 0.008 

Table 12. Error estimate of two-dimensional elliptic problem by using theorem 3 of Table 7. 

i RS 
(cS!d,d − cS,d)

eS!d
f

f
�d 

(cS!d,f − cS,f)
eS!d

f

f
�f 

(cS!d,� − cS,�)
eS!d

f

f
�� 

(cS!d,� − cS,�)
eS!d

f

f
�� 

0 0 0.00001024 0.00001936 0.00001936 0.00001024 

1 0.2 0.00000144 0.00000324 0.00000324 0.00000144 

… … … … … … 

4 0.8 0.0000009 0.00001764 0.00001764 0.0000009 

Table 13. Error estimate of table (7) by using theorem () when k0=3. 

i RS 
(cS,f − cS,d)f

��
f

eS 
(cS,� − cS,f)f

��
f

eS 
(cS,� − cS,�)f

��
f

eS 
(cS,� − cS,�)f

��
f

eS 

0 0 0 0 0 0 

1 0.2 0.000001392 0 0.000001392 0.00001024 

… … … … … … 

4 0.8 0.00000144 0 0.00000144 0.000009 
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Now to estimate the error, equation (14) implies that 

C=0.005 and h=0.2. then 

∑ (\;I1,�#\;,�)2
<;I1

2
�,j .j + ∑ (\;,�I1#\;,�)2

:�I1
2

�,j ℎ� ≤ 0.0002  and 

hence, ∑ (V�,j)��,j ℎ�.j ≤ 0.0002 

5. Conclusion 

In order to obtain a finite volume descritization, the 

domain Ω will be sub-divided in to many sub domains such 

that the collection of all those sub-domains forms a partition of 

Ω. consider the second order one dimensional linear elliptic 

problems of the form as follow ]1,0[,sin)( ∈−= xxxu xx , 

with boundary conditions 017452406.0)1(,0)0( == uu . Here 

the exact solution of the problem is xxu sin)( = , but the 

numerical solution over the control volume 

Nixx
ii

..,,.........2,1),,(
2

1

2

1 =
+− , and by considering 05.0=h

Nixxuuu
ii

iii ..,,.........3,2,1),cos()cos(204020
2

1

2

111 =−=+−
−+−+ , 

where   is natural number. Integration of the governing 

equation over a control volume to yield descritized equation at 

its nodal points. 
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