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Abstract: A new version of the KSOR method is considered to introduce the least squares solution of a full rank over 

determinant system of linear algebraic equations. The treatment depends on introducing an augmented non-singular square 

system through splitting the coefficient matrix A into two matrices A1, A2 with non-singular part, A1. Accordingly, a new version 

of the 3-block SOR method is introduced, the 3-block KSOR method. Selection of the relaxation parameter which guarantees the 

convergence in the sense of reducing the spectral radius of the iteration matrix is considered. Application of the theoretical results 

to a numerical example has confirmed the expected behaviour of the 3-block KSOR method. 
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1. Introduction 

Large linear systems of algebraic equations has appeared in 

many applications of science and engineering problems. The 

selection of the method of solution depends on the structure of 

the linear algebraic system under consideration. Iterative 

techniques especially the successive over-relaxation (SOR) 

method is highly recommended in the treatment of large 

sparse systems. The efficient use of the SOR methods depends 

on the selection of the relaxation parameters. The theory of 

SOR method for square nonsingular systems is well 

established, [1]. In 2012, Youssef introduced the KSOR 

method as a new version of the SOR method, [2] and in 2013 

Youssef and Taha introduced the MKSOR versions of the 

MSOR method, [3]. We adapt the KSOR to treat full rank 

rectangular system. 

Consider the linear system ∑ �������  	� = �� , 
 = 1,2, … , �       (1) 

Or �	 = �,                   (2) 

where � ∈ ��×�,  is nonsingular matrix and has no zero 

diagonal elements. The following splitting of the coefficient 

matrix �, is used in iterative treatments, 

� = � − � − �                (3) 

where �,  is the diagonal part, −�  is the strictly lower 

triangular part and −� is the strictly upper triangular part of 

the matrix �. 
The main idea in the KSOR is the assumption of using the 

current component in the evaluation process in addition to the 

use of most recent calculated components used in the SOR 

methods. 

Let 	��� the s
th

 approximation of solution of (2) then the 

KSOR, [2, 3] method is given by 

 	��� ��� = 1�1 + �∗� !	���� + �∗��� "�� − # ���	������ − # ���	�����
�����

�$�
��� %& 


 = 1,2, … , �, ' = 0,1,2, … , �∗ ∈ � − )−2,0* 
Or 

	������ = ����+∗� 	���� + +∗���+∗� 	,-������
,      (4) 


 = 1,2, ⋯ , �, ' = 0,1,2, ⋯ , �∗ ∈ � − )−2,0* 
	,-������

 is the Gauss –Seidel solution. 

The matrix formulation of KSOR method is 
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	����� = /0-12	��� + 3�1 + �∗�� − �∗�4$���∗��,  (5) 

where, /0-12 is the iteration matrix 

/0-12 = 3�1 + �∗�� − �∗�4$��� + �∗��,    (6) 

The main objective in this work is the treatment of the full 

rank rectangular system, [4, 5, 6]. �	 = �,                   (7) 

where � ∈ �5×�, 6 > �, 8��9 � = �, 	 ∈ �� , � ∈ �5. such 

systems are known as over-determinant systems. In general, 

Over-determinant systems do not admit classical unique 

solutions, [7, 8]. The general treatment for such systems is to 

seek for solutions in a pre-described sense. For example one 

can write, [5, 7] 	 = ���,                   (8) 

Where, �� is the well-known Moore Penrose generalized 

inverse. 

There is many interesting trials to reformulate the iterative 

techniques to be suitable for such systems, [9, 10]. 
The least squares technique is also one of the interesting 

approaches. The least squares solution of the system (7) is a 

vector : ∈ �� such that ;� − �:;< = min@;� − �	;<,       (9) 

It is well known that for full rank systems the least squares 

solution coincident with the generalized inverse solution, and 

the least squares solution is unique. An equivalent formulation 

of the least squares problem (9) can be written in the form, [11, 

12, 13]: 

Find : ∈  �� and 8 ∈  �5 such that 8 = � − �:, �A8 = 0,          (10) 

where � ∈ �5×�, 6 > �, 8��9 � = �, 	 ∈ �� , � ∈ �5. 

One can use the nonsingular part of the matrix � to write 

the system (10) in the following partitioned block form 

B���<C : + D8�8<E = B���<C,           (11) 

)��A �<A*A  D8�8<E = 0,           (12) 

where, �� ∈ ��×� , 8��9 �� = � , �< ∈ ��5$��×�
 also � 

and 8 are partitioned conformably with �. 

� = B���<C , 8 = D8182E , � = B�1�2C,         (13) 

2. The Three Block Coefficient Matrix 

The block formulation of the system (11-13) is ��: + 8� = ���<: + 8< = �<��A8� + �<A8 = 0,              (14) 

This formulation can be treated with different attitudes. We 

focus on the three block formulation. The system in (14) is 

known as the augmented system, it can be rearranged in the 

form �F 	G = �H,                (15) 

Or, in full as 

I�� 0 J�< J 00 �<A ��AK L :8<8�M = L���<0 M,      (16) 

Where, 

�F = I�� 0 J�< J 00 �<A ��AK , 	G = L :8<8�M , and �H = L���<0 M,  (17) 

The coefficient matrix �F  is square non-singular matrix. 

Accordingly the system (16) possesses a unique solution and 

suitable for the use of iterative techniques. Solving �6 +�� × �6 + �� system (16) gives the least squares solution : 

of the original system as understood from the following 

theorem 

Theorem 1, [4, 6]: a vector : ∈ ��  is a least squares 

solution for (7) if and only if the residual vector 8 = � − �	 

satisfies the orthogonality condition, �A8 = 0. 

3. The Three Block KSOR Method 

The three block SOR method was introduced by Chen in 

1975, [5]. Plemmons  [11], Niethammer, de Pillis and Varga  [6], 

later developed this method and specify SOR convergence 

properties. The 3-block KSOR iterative method can be 

introduced in the same approach illustrated in (5) and (6) as 

follows: 

Consider the three block matrix �F  given in (17) and 

consider the splitting �F = �P − �P − �P,             (18) 

where 

�P = L��00  0J0 00��AM, 
�P = L 0−�<0  00−�<A 000M , �P = L000 000 −J00 M. 

The three block KSOR method for system (7) can be 

defined as R����� = /PR��� + S,            (19) 

T:�����8<�����
8������U = /P T:���8<���

8����U + S,         (20) 
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Where /P = ��1 + �∗��P − �∗�P�$���P + �∗�P�,  (21) 

is the iteration matrix of three block the KSOR method. 

/P = I�1 + �∗����∗�<0  0�1 + �∗�J�∗�<A  00�1 + �∗���AK$�  L��00  0J0 −�∗J0��A M, 
S = �∗��1 + �∗��P − �∗�P�$� �H,       (22) 

The theoretical characterization of the KSOR methods is 

strongly dependent on the corresponding Jacobi method. The 

three block Jacobi iteration matrix is given by VP = �P$� ��P + �P�,          (23) 

VP = L��00  0J0 00��AM$�  L 0−�<0  00−�<A −J00 M, 
VP = L 0−�<0  00−��<��$��A −��$�00 M.         (24) 

As in the three block SOR method the spectrum of VP is very 

important in the convergence of the 3-block KSOR method. 

Theorem 2: The eigenvalues of VP, lie in the real interval J = W−X< P⁄ , 0Z, where X = ;[;< = ;�<��$�;< 

Proof: suppose that \ is an eigenvalue of VP then \P is an 

eigenvalue of �VP�P 

From VP as defined in (24) one can easily see that 

�VP�P = L−��$�[A[��00  0−[[A0  00−[A[M,     (25) 

Where [ = �<��$� 

So that �VP�P  is similar to a block diagonal matrix with 

blocks −[[A, which is real symmetric negative semidefinite 

matrix. Therefore ]�−[[/� ≤ \P ≤ 0 −;[;<< ≤ \P ≤ 0 −X< ≤ \P ≤ 0 

So the eigenvalues of VP  lie in the real interval J =W−X< P⁄ , 0Z. 
It is clear from this theorem that ]�VP� < 1 ↔  X < 1. 
Algorithm for three block KSOR method 

� Set :�a�. 
� Compute 8��a�

 and 8<�a�
. 

� Compute the iterative parameter �∗. 

� Iterate for ' = 0,1, 2, ⋯. until convergence. 

:����� = �1 �1 + �∗�⁄ �:��� + ��∗ �1 + �∗�⁄ ���$� b�� − 8����c, 
8<����� = �1 �1 + �∗�⁄ �8<��� + ��∗ �1 + �∗�⁄ �3�< − �<:�����4, 
8������ = �1 �1 + �∗�⁄ �8���� − ��∗ �1 + �∗�⁄ ����A�$��<A8<�����. 

Theorem 3: consider the three block KSOR method of (19) 

for system of (7) and consider the parameter X = ;�<��$�;<. 

Then the three block KSOR method converges for parameter �∗ in some interval if and only if X < 3P <⁄ ≈ 5.1961, 
in particular, if X < 1, 
then (19) converges for all �∗ in the interval Z−∞, 2 �X< P⁄ − 1�⁄ W ∪ *0. ∞),         (26) 

and if X = 1 Then (19) converges for all �∗ in the interval *0, ∞),                  (27) 

and if 1 < X < 2P <⁄ , then (19) converges for all �∗ in the 

interval Z0, 2 �X< P⁄ − 1�⁄ W,             (28) 

and if 2P <⁄ ≤ X < 3P <⁄ , then (19) converges for all �∗ in the 

interval ZX< P⁄ − 2, 2 �X< P⁄ − 1�⁄ W,         (29) 

and it is diverging for other values of �∗. 

When  X < 3P <⁄ , the optimum relaxation parameter is 

given by 

�k∗ = 3 Ll1 + m1 + X<X< n� P⁄ + l1 − m1 + X<X< n� P⁄ M
2X< P⁄ − 3 Ll1 + m1 + X<X< n� P⁄ + l1 − m1 + X<X< n� P⁄ M, 

the proof is similar to the proof which is introduced by 

Niethammer, de Pills and Varga  [6]. 

4. Numerical Calculation 

In order to illustrate the theoretical discussions, we 

introduce the following full rank over-determinant system 

opp
ppp
pq12533748

 
−2 1 1 3 1 2 1 4

 
 3 0−2 2 3−2 5 0

 
 1−3 4 1−2 1 2 5 uvv

vvv
vw

T	�	<	P	x
U =

opp
ppp
pq 3089581217uvv

vvv
vw
, 

with 8��9 � = 4 = �. The unique least squares solution of 

this system is the vector : = )1 1 1 1*A , 
Define the splitting of � as 
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�� = T1253 �2 1 1 3   3 0�2 2   1�3 4 1 U , �< 
 T3748 1214  3�2 5 0  �2 1 2 5 U, 
and the splitting of � as 

�� 
 T3089U , �< 
 T 581217U. 
The augmented linear system of order �12 � 12� is 

op
pp
pp
pp
pp
pq125337480000

 

�2   1   1  3  1  2  1  4  0  0  0  0

 

  3  0�2  2  3�2  5  0  0  0  0  0

 

   1�3   4   1�2   1   2   5   0   0   0   0

 

  0  0  0  0  1  0  0  0  3  1  3�2

 

  0  0  0  0  0  1  0  0  7  2�2  1

  

000000104152

 

  0  0  0  0  0  0  0  1  8  4  0  5

 

   1   0   0   0   0   0   0   0   1�2   3   1

 

  0  1  0  0  0  0  0  0  2  1  0�3

 

  0  0  1  0  0  0  0  0  5  1�2  4

 

000100003321uv
vv
vv
vv
vv
vw

op
ppp
ppp
ppp
pqT : U

 
T8<U
T8� Uuv

vvv
vvv
vvv
vw




op
pp
pp
pp
pp
pq 30895812170000 uv

vv
vv
vv
vv
vw

, 

It is clear that the coefficient matrix is nonsingular, and the 

augmented system has a unique solution and X 
 ;�<��$�;< 
 1.9810. 

The 3-block SOR method converges for all �  in the 

interval � � Z0, 2 31 � X< P⁄ 4⁄ W 
 *0, 0.7760),  and �k  can 

be calculated to be, �k 
 0.752, 0. 

Figure 1 illustrates the behavior of the spectral radius of the 

iteration matrix of the SOR method.  

 

Figure 1. The behavior of the spectral radius of 3-block SOR. 

The 3-block KSOR method is convergent for all �  in the 

interval � � Z0, 2 3X< P⁄ � 14⁄ W 
 *0, 3.4644), 
by computing the � k  by theorem 3, we get �k 
 3.0350, 
Equivalently, it can be approximated from Figure 2, which 

shows the behavior of the spectral radius of the iteration 

matrix of the 3 block KSOR method. 

 

Figure 2. The behavior of the spectral radius of 3-block KSOR. 

The table summarizes the results 

Table 1. Comparison between 3-blok SOR and KSOR. 

Method yz { Number of iterations 

3-block SOR 0.7520 0.4950 19 

3-block KSOR 3.0350 0.4950 19 

5. Conclusion 

Square augmented systems obtained from full rank over 

determinant systems possesses unique solution, which can be 

obtained efficiently with iterative methods. 

The structure of the three block system possesses a very 

nice property (large number of zeros) which illustrates the 

efficient use of iterative techniques. It is clear from the system 

(16) that for the first n equations each equation has at most 

(n+1) non-zero (at least (m-1) zeros), also this is the same for 

the next (m-n) equations and the last n equations each equation 

has at most m non-zeros. 

The three block KSOR has the same interesting properties 

as the three block SOR. 

The optimum values of the relaxation parameter can be 

calculated, and the calculated values in a good agreement with 

the spectral behavior of the iteration matrix 

The calculated numerical results in the given example has 

confirmed the theoretical results. 

From figures 1 and 2, the calculated optimum relaxation 

parameters is in a good agreement with the behavior of the 

spectral radius of the iteration matrices. 
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