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Abstract: In this paper, an optimal control for Hamiltonian control systems with external variables will be formulated and 

analysed. Necessary and sufficient conditions which lead to Pantryagin’s principle are stated and elaborated. Finally it is shown 

how the Pontryagin’s principle fits very well to the theory of Hamiltonian systems. The case of Potryagin’s maximum principle 

will be considered in detail since it is capable of dealing with both unbounded continuous controls and bounded controls which 

are possibly discontinuous. 
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1. Introduction 

It has been essential for many physical systems which are 

governed by differential equations to be controlled in such a 

way that a given performance index would be optimized. 

Large savings in cost have been obtained by a small 

improvement in performance. The optimal control problem 

which will be formulated will be the so called Bolza problem 

[1] with the added condition that the control variables lie in a 

closed set. 

[2] in his paper of Optimal control of stochastic dynamical 

systems developed existence of stochastic optimal controls 

for a large class of stochastic differential systems with finite 

memory is considered. [3] established a feedback control law 

is developed for dynamical systems described by constrained 

generalized coordinates. They revealed that for certain 

complex dynamical systems, it is more desirable to develop 

the mathematical model using more general coordinates then 

degrees of freedom which leads to differential-algebraic 

equations of motion. [4] developed a computational approach 

to motor control that offers a unifying modelling framework 

for both dynamic systems and optimal control approaches. In 

discussions of several behavioural experiments and some 

theoretical and robotics studies, they demonstrated how the 

computational ideas allow both the representation of self-

organizing processes and the optimization of movement 

based on reward criteria. [5] proposed a new mathematical 

formulation for the problem of optimal traffic assignment in 

dynamic networks with multiple origins and destinations. 

Several researchers have studied optimal control and 

dynamical systems. [6] studied Dynamical Systems based 

optimal control of incompressible fluids. They proposed a 

cost functional based on a local dynamical systems 

characterization of vortices. Connections of optimal control 

and Hamiltonian systems especially the necessary conditions 

of optimality has not been studied yet. In this paper, it is 

intended to focus on the link between optimal control and 

Hamiltonian systems. The case of Potryagin’s maximum 

principle will be considered in detail since it is capable of 

dealing with both unbounded continuous controls and 

bounded controls which are possibly discontinuous. 

2. Formulation of Optimal Control 

Problem 

We consider the state of a control system described by an 

n -vector ( ) ( ) ( )( )1  ,...,  nt x t x t=x  whose evolution is 

governed by a system of differential equations 

( ),  g=x x uɺ                                   (1) 

where u  is a control function from a closed subset of n
ℝ  

and nX = ℝ . 

Given a compact interval [ ]0 1,  I t t= , open sets, nX ⊂ ℝ , 
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mV ⊂ ℝ , a set U V⊂  and functions £,  ,  g L  and φ  such 

that 

:L X V× →ℝ , 

£ : X V× →ℝ , 

: Xφ → ℝ , 

: ng X V× → ℝ . 

the optimal control problem can be stated as follows: 

Minimize ( ) ( )( ) ( ) ( )( )
1

0

1
,  ,  

t

t

J x t L t t dtφ= + ∫x u x u             (2) 

over all continuous functions x  and measurable functions u  

satisfying 

( ) ( )( ),  g t t=x x uɺ , t I∈ , 

( )t U∈u , t I∈ . 

L  is called the running cost and φ  the terminal cost. [7]. 

The Pontryagin’s principle requires the introduction of the 

Hamiltonian function : nH X U U× × →ℝ  given by 

( ) ( ) ( ),  ,  ,  ,  
T

H L g= +x p u x u p x u                     (3) 

In analogy with the corresponding quantity in classical 

mechanics. ( )1
,  ...,  

i n

i

L
p p

q

∂= =
∂

p
ɺ

 is the generalized 

momenta. 

Similar to the formulation of the Hamiltonian systems, the 

following set of equations hold [8] 

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

,  ,  ,          

,  ,                                  

  ,  ,  
T

H
t t t t g t t

p

H
t t t t

L g
t t t t t

x

∂ = = ∂


∂ = − ∂
∂ ∂ = − − ∂ ∂

x x p u x u

p x p u
x

x u p x u
x

ɺ

ɺ   (4) 

with boundary conditions 

( )0 0t =x x  

( ) ( )( )1 1
t t

φ∂= −
∂

p x
x

 

Necessary Conditions for Optimality 

In this section we shall state the necessary conditions for 

optimality which then lead to Pontryagin’s maximum 

principle. 

Theorem 

The necessary condition’s for ( )( )* *

0 ,  tx u  to be an optimal 

initial condition and optimal control for the optimal control 

problem stated above are the existence of a nonzero k - 

dimensional vector λ  with 
1

0λ ≤  and an n = dimensional 

vector function ( )tP  such that for [ ]0 1,  t t t∈ :  [1] 

(i) ( ) ( ) ( ) ( )( )* *
,  ,  xt t f t t t′ ′  = −  P P x uɺ  for [ ]0 1,  t t t∈  

and U∈u , 

(ii) ( ) ( ) ( )( ) ( ) ( )( )* *
,  ,  ,  ,  0t f t t t f t t t′  − ≤ P x u x u , 

(iii) ( ) ( )1 ix
t λ φ′ ′=P e  with ( ) ( )( )0 1 0 1,  ,  ,  t t x t x t=e , 

(iv) ( ) ( )
00 x

t λ φ′ ′= −P e , 

(v) ( ) ( ) ( ) ( )( ) ( )
1

* * *

1 1 1 1 1
,  ,  ,  

t
t f t t t t λ φ′ ′=P x x u e  

(vi) ( ) ( ) ( ) ( )( ) ( )
0

* * *

0 0 0 0 0
,  ,  ,  

t
t f t t t t λ φ′ ′=P x x u e  

If ( ),  ,  f t x u  has a continuous partial derivative 

( ),  ,  tf t x u  then the condition 

(vii) ( ) ( ) ( )( ) ( ) ( )( )
0

* * * *

0 1 0 1
,  ,  ,  ,  ,  

t
t f t t t t t t tλ φ′ ′=P x u x x

( ) ( ) ( )( )
1

0

* *,  ,  

t

t

t

s f s s s ds′+∫P x u  

holds for each [ ]0 1,  t t t∈ . 

Condition (ii) above can be written as  

( )( ){ } ( ) ( )( )* * *max ,  ,  ,  ,  H t t H t t t=x u x u .                 (5) 

This is called Pontryagin’s maximum principle. 

The interpretation of this principle is that on the optimal 

control, H  is minimized with respect to the control variables 

j
u , 1,  ...,  j m= . 

For simplicity we shall treat problem. This is a special case 

of the problem of optimal control in which the initial time 

and final time are fixed and there are no conditions on the 

final state. 

We shall restate the Pontryagin’s principle so that it fits 

naturally to our framework of free terminal point problem.  

Theorem: (Pontryagin’s principle for free terminal point 

problem) [1]  

A necessary condition for optimality of a control u  for the 

free terminal point problem is that 

( ) ( )( ) ( ) ( )( ),  ,  ,  ,  0t f t t f t t t′  − ≤ P x v x u           (6) 

For each U∈v  and [ ]0 1,  t t t∈ , where ( )t ′P  is the 

solution of  
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( ) ( ) ( ) ( )( ),  ,  
x

t t f t t t′ ′= −P P x uɺ  

with boundary condition 

( ) ( )( )1 1x
t tφ′ = −P x . 

The Pontryagin’s principle gives only necessary conditions 

for optimality but these conditions need not be sufficient. 

Since each optimal control must be external, there must be 

external controls which are not optimal. However it is natural 

to ask for conditions which are not optimal. However it is 

natural to ask for conditions which are both sufficient and 

necessary for optimality. 

Consider a space ν  of control functions u  defined on 

[ ]0 1,  t t  with values on m
ℝ . Let the subset κ ⊂ V  be the set 

of control functions u  such that ( )t U∈u  for each 

[ ]0 1,  t t t∈  and ( )0 ,  x u  is a feasible pair for the fixed initial 

state 
0
.x  The necessary and sufficient conditions that a 

control u  be optimal for free terminal point problem is that 

for each fixed [ ]0 1,  t t t∈  we have 

( ) ( ) ( )( ),  ,  0P t f t t t′ ≤
u

x u v  for each U∈v  such that 

( ) ( ) ,t t+ ≤u v 0  K  is convex and the mapping 

( ) ( )( )1J tφ=u x  is a function on .K  To fit this to the 

performance index 

( ) ( )( ) ( ) ( )( )
1

0

,  ,  

t

t

J t L t t t dtφ= + ∫u x x u                        (7) 

It is assumed that that L  is a real continuously 

differentiable function and convex in ( ),  x u  and φ  is 

continuously differentiable convex function of .x  For 

simplicity we shall consider a linear system. 

Theorem 

A necessary and sufficient condition for optimality of a 

control u  for free terminal point problem with system [1]. 

( ) ( ) ( ) ( ) ( )t t t t t= +x A x B uɺ , n m×∈B ℝ ,               (8) 

and performance index 

( ) ( )( ) ( ) ( )( )
1

0

1
,  ,  

t

t

J u t L t t t dtφ= + ∫x x u  

is that for [ ]0 1,  :t t t∈  

( ) ( )( ) ( ) ( ),  ,  u 0L t t t t B t′− + ≤
u

x v P vɶ  

for each U∈v  such that ( )t U+ ∈u v  where ( )tPɶ  is the 

solution of 

( ) ( ) ( ) ( ) ( )( ),  ,  t t t L t t t′ ′= − +
x

P P A x u
ɺɶ ɶ , 

( ) ( )( )1 1
,  t t tφ′ =

x
P xɶ . 

Moreover if in ( ),  ,  L t x u  is strictly convex in ( ),  x u  for 

each fixed t , the optimal control ( )tu  is unique [1]. 

Proof 

Since the corresponding differential equations is a linear 

system, the set κ  of controls such that ( )t U∈u  and 

( )( )0 ,  tx u  is a feasible pair consists of all piecewise 

continuous functions such that ( )t U∈u . This is a convex 

set. Let ( )0 tu  and ( )1 tu  be controls in κ  and ( )0 tx  and 

( )1 tx  the corresponding solutions of the differential 

equations with ( )0 0t =x x . If 0 1α< < , the convexity of 

( ),  ,  L t x u  and ( )φ x  implies 

( ) ( ) ( ) ( ) ( )( ) ( )( )
1

0

0 1 0 0 0 11 ,  ,  

t

t

J J L t t t dt tα α α φ
 

+ − = + 
  
∫u u x u x  

( ) ( ) ( )( ) ( )( )
1

0

1 1 1 1
1 , ,

t

t

L t x t u t dt x tα φ
 

+ − + 
  
∫  

( ) ( ) ( ) ( ) ( ) ( )( )
1

0

0 1 0 1
,  1 ,  1

t

t

L t t t t t dtα α α α≥ + − + −∫ x x u u  

( ) ( ) ( )( )0 1 11t tφ α α+ + −x x  

( )0 11Jα α= + −u u                                                        (9) 

since ( ) ( ) ( )11t tα α+ −x x  is the solution of the differential 

equation corresponding to ( ) ( ) ( )0 11t tα α+ −u u . Therefore 

( )J u  is a convex function on κ . It can be shown that for 

each ( )tv  satisfying ( ) ( )t t U+ ∈u v  for each [ ]0 1,  t t t∈  

that 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
1

0

,  ,  ,  0

t

t

J L t t t t t t t dtδ  ′= − ≥
  ∫ uu v x u v P B vɶ .  (10) 

Hence ( )J u  has a minimum at ( )t=u u  [1]. 

If ( ),  ,  L t x u  is strictly convex, the above inequality is 

strict. Thus ( )J u  is a strictly convex function on κ  and the 

minimum is unique. 

3. Connections to Hamiltonian Systems 

To fit the Pontryagin’s principle to theory of to the theory 

of Hamiltonian systems, a control system 
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( ),  g=x x uɺ , X∈x  

will be considered with the input space U  a manifold 

without boundaries ( ),  ,  H x p u  and a smooth function in all 

of its variables. Under these conditions, the Pontryagin’s 

principle implies the first order condition 

( )*
,  ,  0

H∂ = =
∂

x p u
u

 for optimization. 

Consider a simple control system ( ),  ,  X B g∑  given by 

 

with ( ),  B = x u . 
*M T X=  has a natural symplectic form 

dω θ=  and ( )*
T T X  has a symplectic form ωɺ . The space 

of external variables ( )*
,  W T U u y= =  have a symplectic 

form e edω θ= . Therefore ( )* *
T T X T U×  is a symplectic 

form 
* *

1 2

eπ ω π ωΩ = + . Let :L X U× →ℝ  be a smooth 

function and *:H T X U× → ℝ . These functions define the 

Hamiltonian 

( ) ( ) ( ),  ,  ,  ,  
T

H L p g= +x p u x u x u . 

This is a generating function of the Lagrangian 

submanifold ( )( )* * ,  N T T X T U⊂ × Ω  given by the 

Hamiltonian equations 

( )

( )

( )

,  ,  

,  ,  

,  ,  

i

i

i

i

i

j

H
x

p

H
p

x

H
y

u

 ∂=
∂

 ∂ = − ∂
 ∂= −

∂

x p u

x p u

x p u

ɺ

ɺ ; 1,  ...,  ;   1,  ...,  i n j m= =    (11) 

[8] has shown that Hamiltonian control system is given by 

( )

( )

( )

,  ,  

,  ,  

 ,  ,  

i

i

i

i j

j

H
q

p

H
p

q

H
y c

u

 ∂=
∂

 ∂ = − ∂
 ∂= −

∂

q p u

q p u

q p u

ɺ

ɺ ; 1,  ...,  ;   1,  ...,  i n j m= =    (12) 

Comparing equations (11) and (12) it can be concluded 

that a control system ( ),  ,  X B g∑  together with a smooth 

function :L X U× → ℝ  defines a full Hamiltonian system 

( )* * *
,  ,  ,  HT X T U T B f∑  where ( ),  H H Hf g h  with 

( )* *:
H

g T X U T T X× →  such that ( ),  ,  ,  ,  ,  
H

H H
g

 ∂ ∂= − ∂ ∂ 
x p u x p

p x
 

and 
* *:

H
h T X U T U× →  such that ( ),  ,  ,  

H

H
h

∂ − ∂ 
x p u u

u
. 

It is assumed that B  is a trivial bundle [9]. 

Let ( )dim X n=  and ( )dim U m= . Let also ( ),  L x u , 

( ),  ,  H x p u  and the Hamiltonian system 

( )* * *
,  ,  ,  HT X T U T B f∑  be as defined above. Then if 

2

rank
i j

H
m

u u

 ∂ =  ∂ ∂ 
, 1,  ...,  i m=  the equation ( )*

,  ,  0
H

u

∂ =
∂

x p u  

has a local Hamiltonian function ( )( )*,  ,  ,  optH H= x p u x p

[10]. We then obtain locally a Hamiltonian vectorfield 
optHX  

on *
T X . The projection of the solution curves of 

optHX  on 

X  form a set of curves which by Pontyagins principle 

contains the optimal trajectory ( )*
.x . It is noted that 

2

rank
i j

H
m

u u

 ∂ =  ∂ ∂ 
, 1,  ...,  i m=  implies that also 

rank
H

m
u

∂  = ∂ 
. If we have only rank of the 

map
H

m
u

∂  = ∂ 
 hen we obtain an immersed Lagrangian 

submanifold V  of ( )( )* ,  T T X ωɺ . This is similar to the 

implicit Hamiltonian differential equation ( ),  ,  ,  0P =x p x pɺɺ . 

If ( )*T T X  is projected onto *T X  then there may be some 

points in V  where the projection does not have mximal rank 

and thus the solution of the differential equation will not be 

defined. If *T X  is projected onto X , singularities and non-

uniqueness of the optimal trajectories my occur [10]. 

4. Conclusion 

In this paper, an optimal control for Hamiltonian control 

systems with external variables has been formulated and 

analysed. Necessary and sufficient conditions which led to 

Pantryagin’s principle are stated. It was shown how the 

Pontryagin’s principle to the theory of Hamiltonian systems. 

The case of Potryagin’s maximum principle was taken abroad 

because it is capable of dealing with both unbounded 

continuous controls and bounded controls which are possibly 

discontinuous. 
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