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Abstract: This is sequel to our earlier work [11] in which we introduced a new direction in Mathematics called by “Region 
Mathematics”. The ‘Region Mathematics’ is a newly discovered mathematics to be viewed as a universal mathematics of super 
giant volume containing the existing rich volume of mathematics developed so far since the stone age of earth. To introduce 
the ‘Region Mathematics’, we began in [11] by introducing three of its initial giant family members: Region Algebra, Region 
Calculus and Multi-dimensional Region Calculus. In this paper we introduce three more new topics of Region Mathematics 
which are : Theory of Objects, Theory of A-numbers and Region Geometry. Several new kind of Numbers are discovered, and 
consequently the existing ‘Theory of Numbers’ needs to be updated, extended and viewed in a new style. 
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1. Introduction 

In the work [11] we introduced a new direction in 
‘Mathematics’ called by “Region Mathematics” for the world 
mathematicians, academicians, scientists and engineers. The 
direction is launched by discovering the algebraic structure 
“Region” first of all, on submitting sufficient justification 
behind the genuine and mandatory need to introduce it; and 
then introducing the “Region Calculus”. The new topic 
“Region Calculus” is a generalization of the classical 
calculus and Analysis [12, 19, 20, 22]. In this paper we 
introduce three new family members of “Region 
Mathematics”, which are : “Theory of Objects”, a new 
language of the “Theory of Numbers” (which generates the 
existing ‘Theory of Numbers’ as one particular instance of 
it), and finally another new topic “Region Geometry” which 
do also generate the classical geometry as one of its 
particular instance. But with the introduction of few of its 
giant family members, it is the beginning of the super-giant 
“Region Mathematics”, and at this moment it is at baby 
stage. The purpose of developing the super-giant ‘Region 
Mathematics’ is not just for doing a kind of generalization of 
the existing rich volume of classical Mathematics, but it has 

automatically happened so in its initial growth in the work 
[11]. The complete content of the work [11] and of the 
present paper can be well studied without referring to the 
work [3-7], because the work [11] and also the present work 
is a major revised and updated version. 

The properties of region algebra are very important as this 
is the ‘minimal algebra’ which justifies free and fluent 
practice of elementary as well as higher algebra. This 
important caliber of regions having the unique property to be 
qualified as the ‘minimal algebra’ in the sense of giving a 
kind of authorized driving license to the world 
mathematicians, the caliber which is not possessed by 
groups, rings, modules, fields, linear spaces, algebra over a 
field, associative algebra over a field, and even not by 
‘division algebra’ or by any existing standard algebraic 
system alone, in general, by virtue of their respective 
definitions and properties. This important identification, 
probably the most important issue in the subject ‘Algebra’ 
and one of the most important issues in Mathematics, was 
missing so far in any past literature of algebra [1, 2, 14-17, 
21, 23], and thus it is surely a unique algebra of absolute 
integrated nature and super power. With the introduction of 
Region Mathematics, all existing branches of mathematics 
can be provided their siblings with the progress in future 
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research works, in order to explore the academic universe of 
science, mathematics, engineering, social science, statistics, 
etc. with many more alternative new approaches and new 
thoughts. For details about Region Algebra and Region 
Calculus, in particular about an important notion called by 
‘Complete Region’, one could see [11] as pre-requisites for 
the present work. 

In section-2 here a new algebraic theory called by “Theory 
of Objects” is introduced which generates the existing very 
popular notion of ‘prime/composite objects’ and then 
produces the existing notion of prime/composite numbers as 
a special case of ‘prime/composite objects’. The notion of 
‘imaginary objects’ in a region is then introduced and it is 
observed that the classical ‘imaginary numbers’ (or, complex 
numbers) are just one particular instance of the ‘imaginary 
objects’. Although the birth of the particular instance 
‘imaginary numbers’ took place in an independent way long 
before (i.e. long before the discovery of ‘imaginary objects’), 
but interestingly it happened out of a very particular 
‘region’!, the fact which is unearthed and explained here. 
Neither Division Algebra [1, 2, 14-17, 21, 23] nor any 
existing algebraic system alone can produce this theory on 
the development of prime numbers, composite numbers, 
imaginary numbers and compound numbers. One very 
interesting topic introduced is the discovery of ‘compound 
numbers’. 

We then introduce another new giant direction in Number 
Theory. We say that every complete region A has its own 
‘Theory of Numbers’ called by ‘Theory of A-numbers’, 
where the classical ‘Theory of Numbers’ is just one instance 
of it being the the ‘Theory of RR-numbers’ corresponding to 
the particular complete region RR. It is claimed that the 
“Theory of Objects” will play a huge role to the Number 
Theorists in a new direction. In due time, the ‘Number 
Theorists’ may be re-designated with the new title ‘Object 
Theorists’ as they may need to cultivate the broad area 
‘Theory of Objects’ in pursuance of cultivating the ‘Theory 
of Numbers’ in a much better style and fashion. In fact, one 
of the major contributions in this work on Region 
Mathematics is that several new type of numbers are 
discovered (in Section-2). All these new sets of numbers 
need to be studied further in the context of F-algebra, 
Associative Algebra and Division Algebra and ofcourse in 
the context of region algebra. 

In Region Mathematics, the “Theory of Objects” then 
induces another new direction called by “Region Geometry” 
in Section-3. The “Region Geometry” is interesting, being a 
generalization of our rich classical geometry of the existing 
notion. The notion of object point, object axes, region line, 
region plane etc. are introduced here as the initial work on 
“Region Geometry”. 

2. Theory of Objects 

‘Region’ is the most practiced algebra in school/college 
education, research, scientific and engineering calculations, 
etc. and a mandatory algebra in the study of science, 

mathematics, engineering. Its objects (elements) play various 
roles to expose themselves for induction in various branches 
of mathematics, and they exercise among themselves too 
with various characteristic properties. This phenomenon 
develops a new direction in Region Mathematics called by 
“Theory of Objects”. 

This section provides the beginning of the “Theory of 
Objects”. Presently the theory is at its baby stage. In due 
time, with rigorous future research, it will include its other 
components too. However, the Theory is initiated in this 
section with three giant topics as follows: 

1. “Prime Objects” and “Composite Objects” in a Region. 
2. “Imaginary Objects” and “Compound Objects” in a 

Region. 
3. “Theory of Numbers”: Every Complete Region has its 

own. 
The subsection 2.1 introduces the topic “Prime Objects” 

and “Composite Objects” in a Region, the subsection 2.2 
introduces the topic “Imaginary Objects” and “Compound 
Objects” in a Region, and the subsection 2.3 introduces the 
topic “Theory of Numbers” : Every Complete Region has its 
own. 

2.1. ‘Prime Objects’ and ‘Composite Objects’ in a Region 

In our school mathematics, we speak about ‘prime 
numbers’ and ‘composite numbers’. They are members of the 
set R of real numbers. We will see in this subsection that they 
are objects of the region R, viewing them as objects instead 
of numbers. In this sense we may view them as ‘prime 
objects’ and ‘composite objects’ of the region R. But there 
are few simple questions arise immediately: Why we are to 
consider the notion of ‘prime objects’ and ‘composite 
objects’ of the particular region R only? Why do we not think 
and explore about an analogous concept for other regions 
too? In this subsection we introduce the notion of ‘prime 
object’ and ‘composite object’ in any arbitrary region A = 
(A, ⊕ ,*, • ). We consider here regions only, not necessarily 
complete regions. First of all we introduce the notion of 
‘bachelor set’ in a given region. 

2.1.1. ‘Bachelor Set’ in a Region 

Let A be a region. A subset B of the region A is called a 
‘bachelor set’ in A if 

(i) 1A∈  B, 0A∉ B and 
(ii) ∀ x (≠ 1A) ∈  B, x-1 ∉ B. 
Clearly, a bachelor set can never be a null set because the 

smallest bachelor set in a region A is the singleton {1A}. Also, 
it is obvious from the above definition that the self-inverse 
objects (like an element x, where x2=1A) other than 1A of the 
region A are not the members of any bachelor set of A. 

Any subset S of a bachelor set B in the region A is also a 
bachelor set in A if 1A∈  S. It can be verified that if B is a 
bachelor set in a region A, then the set Bɶ  = {y : y = x-1 where 
x ∈B}is also a bachelor set in A. This set Bɶ  is called the 
‘conjugate bachelor’ of the bachelor set B in the region A. 

Clearly, conjugate of the conjugate of B is B itself. The 
union of two bachelors in A need not be a bachelor in A, but 
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the intersection of two bachelors will be a bachelor in A. For 
every bachelor set B in A, B ∩ Bɶ  = {1A}. If B and C are two 
bachelors in the region A, then the conjugate of (B ∩C) is Bɶ

∩ Cɶ . If B = Bɶ , then the only case is that B = Bɶ = {1A}. 
Example 2.1.1 

Consider the region RR. Clearly the following are true : 
(i) the set N of natural numbers is a bachelor set in the 

region RR. 
(ii) The set M = {1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, …} = 

{m : m = 1/n, n ∈N, where N is the set of natural 
numbers} is a bachelor set in the region RR. 

(iii) The set L = {1, 78.261, 9287, 83.5} is also a bachelor 
set in the region RR. 

Example 2.1.2 

The set R+ of all positive real numbers is not a bachelor set 
in the region RR. 

Proposition 2.1.1 

If the set B of cardinality n is a bachelor set in the region 
A, then B has 2n-1 number of distinct sub-bachelors. 

Proof: 

For n = 1, the result is true because the only possibility is 
that B = {1A}. 

Now consider the case n > 1. The two trivial sub-bachelors 
are {1A} and B. The cardinality of the set B – {1A} is (n-1) 
which is having 2n-1 number of subsets including the null set 
and the set B – {1A} itself. Adding the common element 1A to 
each of these 2n-1 subsets will create 2n-1 number of bachelor 
sets of A, being all the sub-bachelors of B. Hence proved. 

There are four types of division operations in region 
algebra which are defined in subsection 3.2.9 in our earlier 
work in [11]. We introduce here the operation of ‘Exact 
Division’ in a bachelor set in the region A, which is a kind of 
division of an element of a bachelor set B by another element 
of the same bachelor set B. 

2.1.2. ‘Exact Division’ in a Bachelor Set 

Let B be a bachelor set in the region A. Consider two 
objects x, y ∈  B. We say that the object x exactly divides the 
object y in B, denoted by the notation “x |By”, if ∃ z ∈  B 

such that 
y

x
 = z holds good in the region A. The notation 

“|B” signifies the operation of ‘exact division’ in B, and the 
notation signifies the operation “can not exactly divide” in B. 

The following results are straightforward. 
Proposition 2.1.2 

(i) x |B x and 1A|B x ∀ x ∈  B. 
(ii) for x ≠ y, if x |B y then y x, where x, y ∈  B. 
Proposition 2.1.3 

It may happen that for a given pair of objects x, y in a 
bachelor B in a region A, neither x |B y nor y |B x. 

Proof: 

Consider a bachelor C in the region A where x, y are in C and 

x |C y (such that 
y

x
 = z). Now consider the set B = C – {z}. 

Clearly B is a bachelor in the region A, where both x and y are 
in a bachelor B but neither x |B y nor y |B x. Hence proved. 

2.1.3. ‘Composite Objects’ and ‘Prime Objects’ in a Region 

with Respect to a Bachelor Set of It 

We introduce now the notion of ‘Composite Objects’ and 
‘Prime Objects’ in a region with respect to a bachelor set B of it. 

‘Composite Object’ 

Let B be a bachelor set of a region A. An object x ∈B is 
called a ‘Composite Object’ in B, if ∃ p, q ∈  B – {1A} such 
that x = p*q in A. 

‘Prime Object’ 

An object x∈  B – {1A} is called a ‘Prime Object’ in B if x 
is not a composite object in B. 

It may be noted that any composite or prime object in B 
must be a member of B. By construction here, there is no 
reason to check whether the element 0A and the self-inverse 
elements (other than 1A) of the region A are ‘prime’ or 
‘composite’ or ‘neither prime nor composite’ in any bachelor 
set in the region A, as they can not be members of any 
bachelor set in A. However, 1A is the only element in any 
bachelor B which is neither a prime object nor a composite 
object. For every other object x (i.e. if x ≠1A) in B, x is by 
default either a prime object or a composite object. Thus the 
following proposition is straightforward. 

Proposition 2.1.4 

There can not be any object x in the bachelor B in the 
region A which is both prime and composite. 

If may be noted here that an object x may be prime in a 
bachelor B of a region A, but may not be so in another 
bachelor C of the same region A, even if x∈B, C both. Thus, 
for a given region, the property of prime, composite and 
‘neither prime nor composite’ is dependent upon the concerned 
bachelor set, and they must be members of the concerned 
bachelor set. For a given bachelor set, checking an object of a 
region whether prime or composite or ‘neither prime nor 
composite’ with respect to this bachelor set is an invalid issue 
if the object itself be not a member of the bachelor set. 

A Partition of a Bachelor Set 

For a bachelor set V in a region A, an important partition 
of the set V can be made into three subsets :  the set of Prime 
objects in V,  the set of Composite objects in V,  and the set 
of neither Prime nor Composite objects in V, as shown in 
Figure 1. This is a partition of the bachelor set V because 
there can not be any object in the set V which is both a prime 
object and a composite object simultaneously in V. 

 

Fig. 1. Prime, Composite and ‘neither prime nor composite’ objects in a 

bachelor set V in the region A. 
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The following proposition is now straightforward. 
Proposition 2.1.5 

If x is a prime (composite) object in a bachelor B of a 
region R, then x-1 is a prime (composite) object in the 
conjugate bachelor Bɶ  and conversely. 

We present below examples of the notion of prime objects 
and composite objects in a bachelor set in a region. 

Example 2.1.3 

Consider the region RR. Consider the bachelor set N of the 
region RR where N = {1, 2, 3, 4, 5, 6, 7, 8, …} = the set of 
natural numbers. Clearly, the members 4, 6, 8, 9, 10, 12, 
14,.…. are composite objects of the bachelor N here in the 
region RR; and the members 2, 3, 5, 7, 11, 13,.… are prime 
objects of the bachelor N in RR. Actually these are 

popularly known as ‘composite numbers’ and ‘prime 

numbers’ respectively in the existing literature of the 

classical ‘Theory of Numbers’. There can not be any object 
in the bachelor N which is both prime and composite. 

And 1 is the only object in the bachelor N which is neither 
a prime object nor a composite object (see Figure 2). There is 
no object in the bachelor N which is both prime and 
composite object. In fact this is a very much known result in 
the existing classical ‘Theory of Numbers’ that the integer 1 
is neither a prime number nor a composite number. 

 

Fig. 2. Prime, Composite and ‘neither prime nor composite’ numbers in the 

bachelor set N (of natural numbers) in the region RR. 

Another example of prime and composite objects is given 
below. 

Example 2.1.4 

Consider the region RR. Consider the bachelor set M of 
the region RR where M = {1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 
1/8, …} = { m : m = 1/n, n ∈N, where N is the set of natural 
numbers}. Clearly, the members 1/4, 1/6, 1/8, 1/9, 1/10, 
1/12,..… are composite objects of the bachelor M here in the 
region RR; and the members 1/2, 1/3, 1/5, 1/7, 1/11, 1/13,..… 
are prime objects of M in RR (see Figure 3). And 1 is the 
only object in the bachelor M which is neither a prime object 
nor a composite object. There is no object in the bachelor M 
which is both prime and composite. 

 

Fig. 3. Prime, Composite and ‘neither prime nor composite’ numbers in the 

bachelor set M in the region RR. 

Example 2.1.5 

Consider the bachelor L = {1, 78.261, 9287, 83.5} of the 
region RR. Clearly, the members 78.261, 9287, 83.5 are 
prime objects in the bachelor L; there does not exist any 
composite object in L. And 1 is the only object in the 
bachelor L which is neither prime object nor composite 
object. There can not be any object in the bachelor L which is 
both prime and composite. 

The above Examples show that the classical prime 
numbers (in the existing classical ‘Theory of Numbers’) are 
particular case of prime objects in the region RR with respect 
to its bachelor set N. It may be noted that the notion of prime 
objects and composite objects are defined over any region, 
need not necessarily be in a complete region. 

2.2. “Imaginary Objects” and “Complex Objects” of a 

Region 

In this section we introduce the topic of ‘imaginary 
objects’ of a region. However, we will also see here that a 
region A may or may not have imaginary object. A region 
even may have more than one imaginary objects too. 
Imaginary objects of a region A are not members of A and so 
they are called ‘imaginary’ with respect to the concerned 
region A only (i.e. it is a local characteristics property with 
respect to the region concerned). An imaginary object of a 
region A could be core member (not imaginary object) of 
many other regions. Every region has its own set of 
imaginary objects (if exist). 

2.2.1. ‘Existence’ of Imaginary Objects and Complex 

Objects of a Region 

Consider a region A = (A, ⊕ ,*, • ). For the region A, any 
member of the set A is called a “real object” of the region A. 
If something is not a member of the region A, we can not call 
it a real object of the region A. 

I. Existence of imaginary object of a region 

Let E1(x) and E2 (x) be two single variable expressions 
valid in the region A. (It may be recalled that an expression is 
regarded to be a valid expression in an algebraic system A if 
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it can be computed in A with the valid operations of A). If 
the equality (not identity) E1(x) = E2(x) is not satisfied by any 
element x of the region A, then we say that the region A has 
at least one “imaginary object”. 

Let us imagine that i is an imaginary object of the region A 
coming out of the equation E1(x) = E2(x). Then we must have 
E1(i) = E2(i) = z (say) where z is a member of A, but i is not a 
member of A. Let us designate this imaginary object i of A to 
be an atomic imaginary object. Then any expression E(i, x1, 
x2, x3, …., xn) with respect to the operations ⊕ ,*, •  of the 
region A over its outer field F is called a “complex object” of 
the region A. There may exist nil or one or more number of 
atomic imaginary object in a region A, and corresponding to 
every imaginary object (if exists) there exists a set of 
complex objects of the region A. 

It may be noted here that by definition we can only realize 
about the existence of an imaginary object of a region A, but 
we can not trace its identity immediately. Because, an 
imaginary object of a region A is not a member of A, and at 
the same time it is fact that, on this issue we officially know 
nothing beyond the boundary of the set A at this stage. It is 
an open problem to us for further study and research. 

Example 2.2.1 
Consider the region RR. If we take E1(x) = x2 +1 and E2(x) 

= 2x - 1, then we understand the existence of at least one 
imaginary object of the region RR. 

If we take E1(x) = x2 +1 and E2(x) = 0, then this too shows 
that the RR region does have at least one imaginary object. 
But, by the above examples, we are not sure here whether 
there exist only finite number or infinite number of 
imaginary objects of RR. 

Example 2.2.2 

In the simple trivial region ( Z2, ⊕ ,.,. ) where Z2 = {0, 1}, 
⊕  is the “addition modulus 2” operator and ‘.’ is the 
‘multiplication modulus 2’ of real numbers, we see that if we 
take E1(x) = 2x+1 and E2(x) = 0, then we observe that there 
exist at least one imaginary object for this region Z2. 

However, if we take E1(x) = x2 +1 and E2(x) = 0 then it 
does not help us to know the existence of any imaginary 
object of Z2. 

It is justified in Subsection-4.9 in [11] that there exist 
infinite number of distinct 1-D complete regions 
mathematically. 

Proposition 2.2.1 

Every complete region with characteristic zero has at least 
one imaginary object. 

Proof. (This proposition is established subsequently in 
Proposition 2.4.2 here). 

II. A∋ -Complex Objects 

Consider any complete region A = (A, ⊕ ,*, • ) whose 
characteristic is zero. It is justified above that every such 
region has at least one imaginary object. Consider any 
imaginary object of A, which is A∋  (say). Then ∀ Ax , Ay ∈  
A, the object ( Ax ⊕ A∋ Ay ) is called an “ A∋ -complex 
object” corresponding to the region A. In that case the object 

Ax  is called the ‘real part’ and the object Ay is called the 
‘imaginary part’ of the A∋ -complex object. Obviously both 

real part and imaginary part of an A∋ -complex object are real 
objects of the region A. 

III. ∋ -Complex Objects : a particular case of A∋ -Complex 

Objects 

Consider the infinite region A = (A, ⊕ ,*, • ) whose 
characteristic is zero. In Proposition 2.4.2 (established 
subsequently), it is shown that the equation 2

Ax  + 1A  = 0A  is 
not satisfied by any object of A. Suppose that the 
corresponding particular imaginary object A∋  is denoted by 
the notation ∋ . 

Thus we have the result 2∋  + 1A = 0A , i.e. 2∋  = ∼ 1A . 
Then ∀ Ax , Ay ∈  A, the object ( Ax ⊕ ∋ Ay ) is called an 

∋ -complex object corresponding to the region A. 
The set CA = { Az  = ( Ax ⊕ ∋ Ay ) : Ax , Ay ∈  A} is called 

the set of all ∋ -complex objects corresponding to the region A. 
IV. Algebra of ∋ -Complex Objects 

Consider the set CA of all ∋ -complex objects 
corresponding to the infinite region A. Denote the ∋ -
complex object ( 0A ⊕ ∋ 0A ) by the notation ∋ 0 and the ∋ -
complex object (1A ⊕ ∋ 0A ) by the notation ∋ 1. If Az = ( Ax

⊕ ∋ Ay ) be an ∋ -complex object, then we define its 

conjugate ∋ -complex object given by Az∼  = ( Ax ∼ ∋ Ay ). 
Define the following operations over the set CA : 
(1) Addition & Subtraction 

If 1Az = ( 1Ax ⊕ ∋ 1Ay ) and 2Az  = ( 2Ax ⊕ ∋ 2Ay ) be two 
∋ -complex objects, then define addition of them using the 
identical notation ⊕  as below 

1Az ⊕ 2Az = ( 1Ax ⊕ 2Ax ) ⊕ ∋  ( 1Ay ⊕ 2Ay ), which 
clearly belongs to CA; 

and define subtraction as below 

1Az ∼ 2Az  = ( 1Ax ∼ 2Ax ) ⊕ ∋  ( 1Ay ∼ 2Ay ), which 
clearly belongs to CA. 

(2) Multiplication 

If 1Az = ( 1Ax ⊕ ∋ 1Ay ) and 2Az  = ( 2Ax ⊕ ∋ 2Ay ) be two 
∋ -complex objects, then define multiplication of them using 
the identical notation ∗  as below 

1Az ∗ 2Az  = ( 1Ax ∗ 2Ax ∼ 1Ay ∗ 2Ay ) ⊕ ∋  ( 1Ax ∗ 2Ay ⊕

1Ay ∗ 2Ax ) which clearly belongs to CA. 
(3) Scalar Multiplication 
For k ∈ R and for Az  = ( Ax ⊕ ∋ Ay ) ∈ CA, define the 

scalar multiplication as below: 
k • Az = (k • Ax ⊕ ∋ k • Ay ), which clearly belongs to CA. 
Ⅴ. Im-numbers and Imaginary Numbers 

The ‘imaginary objects’ of the particular region RR are to 
be called by ‘imaginary numbers’ in our Region 
Mathematics. But now there arises a conflict (of title) 
because of the fact that the existing ‘Theory of Numbers’ has 
also a notion of ‘imaginary numbers’. To avoid confusion 
between the existing concept of ‘imaginary numbers’ and our 
notion of ‘imaginary numbers’ which is introduced here for 
the region RR, we will henceforth call our notion of 
‘imaginary numbers’ by the abbreviated term ‘im-numbers’. 
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It is obvious that all the imaginary numbers are im-numbers, 
but at this moment we can not answer whether the converse 
is true or not. 

We call the im-numbers for the set of real numbers R by 
the term R-im or rim (in short). If there exist im-numbers for 
the set of complex numbers C then we will call each of them 
by the term C-im or cim (in short). The existing ‘Theory of 
Numbers’ says that i is a rim. 

2.2.2. “Square Root” of an Object in a Region 

For a given object z of a region A, if ∃  x ∈  A such that 
x2 = z then we say that x is a real square root object (or, 
simply may be called ‘square root’) of the object z, denoted 
by z  = x. 

An object of a region A may have nil or more number of 
real square roots. Clearly 0A and 1A are the only objects for 
which the object itself is the square root of it respectively. 
However 1A may have more than one square roots. 

Example 2.2.3 

Consider the region RR. Clearly the object 9 of RR has a 
square root and the object -9 does not have any square root. 
Hence -9 has at least one imaginary square root. It implies 
that the region RR does have at least one imaginary object. 

2.2.3. “nth Root” of an Object in a Region 

For a given object z of a region A, if ∃ x ∈  A such that xn 
= z then we say that x is a real nth root object (or, simply 
may be called ‘nth root’) of the object z denoted by n z , 
where n is a positive integer. An object may have nil or more 
number of real nth roots. In case, for a given z the equation 
xn = z is not satisfied by any x ∈  A, then we say that z has at 
least one ‘imaginary nth root’; and at the same time we 
understand the existence of at least one ‘imaginary object’ of 
the region A. 

2.2.4. Classical Set of “Complex Numbers”: A particular 

Instance 

For an arbitrary region A, knowing about the possible 
‘existence’ of some imaginary objects of it is not a 
straightforward task. Consequently, knowing the ‘identities’ 
of the imaginary objects of it (if exist) is also not a 
straightforward task, unlike knowing the imaginary objects of 
the region RR which is a particular case. Nevertheless, 
according to our Theory of Objects there is no guarantee at 
this stage that: “the set of all imaginary objects of the region 
RR is exactly equal to the set of complex numbers”. It is an 
open problem now for us. However it is now guaranteed that 
the classical set C of complex numbers is a subset of the set 
of all imaginary objects of the region RR. 

2.2.5. Logarithm of Objects 

Consider a region A. For two objects x and y of the region 
A, the logarithm of an object x to the base y is denoted by the 
notation logy(x) is the unique real number b such that yb = x. 
We will discuss the issue for x = 0A or for y = 0A later on, but 
in an analogous way of classical logarithm results. We will 
also establish the classical algebraic results of logarithm in 
Region Mathematics in later subsections. We will see that if 
A and B are two distinct complete regions, then the real 

numbers like 2log
A

4A (i.e. logarithm of the object 4A to the 

base 2A) and 2log
B

4B are not equal. The objects like 4A, 4B 

etc. are introduced in subsection 2.4 below. 

2.3. Discovery of “Compound Numbers”: Another New 

Direction Unearthed in the Classical ‘Theory of 

Numbers’ 

Take the function f(x) = x2 + 1. There is no x in the region 
RR (set R) which satisfies the equation f(x) = 0. It indicates 
that there is at least one rim in R. It is in fact well known to 
everybody that R has one rim which is i. At this moment we 
will not debate on the issue “How many distinct atomic rims 
R does have of kind i”, unless we do further work on it in the 
context of region mathematics. As in the existing literatures 
on the classical Theory of Numbers, there is one and only 
one atomic rim which is i, of course along with infinite 
number of other rims of kind (a+ib). 

Now let us consider the following analysis very carefully: 
Consider the region C. Consider the function f: C → C 

given by 

f(z) = (|z|2 + 2) + 3i. 

Consider another function g : C → C given by 

g(z) = 1 + 3i. 

It may be observed that there is no object z of C which 
satisfies the equation f(z) = g(z). Consequently, according to 
our earlier discussion made in subsection-2.2.1, it indicates 
that there is at least one imaginary object (cim) in C. Say e is 
one atomic cim in C generated from the above equation f(z) 
= g(z). It means that e is an imaginary object of C for which 
the equality f(e) =g(e) = z0 holds good, where z0∈  C. 

It is to be noted that i is an im-member of the region R, not 
of the region C; and similarly e is an imaginary member of 
the region C, not of the region R. Thus for the real objects z1 
and z2 of C, if e is one cim of C then the object d = (z1 + e z2) 
is not a member in C i.e. is not a real object of C (this 
situation is analogous to the case where for x1 and x2 of R, 
the object d = (x1 + i x2) is not a member in R). Such an 
object d = (z1 + e z2) is an complex object of the region C and 
is called by a compound number in C here. The complex 
number z1 is a real object of C and is called the ‘complex 
part’ of the compound number d; and the complex number z2 

is also a real object of C and is called the ‘imaginary part’ of 
the compound number d. Corresponding to every atomic cim, 
there exist infinite number of compound numbers. 

In general, suppose that R1, R2, R3, ….., Rn are n number 
of regions. A region may or may not have imaginary object. 
Even if a region Ri has an imaginary object, we need to 
explore how many more imaginary object does Ri have. If ei 
is an imaginary object of the region Ri and if a, b are real 
objects of Ri then (a + b ei) is a complex object of the region 
Ri. However, for the particular region C, its complex objects 
are called by compound numbers. 

No confusion about the existence of cim 

If x, y are in R then the equation x2 + y2 + 1 = 0 is not 
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satisfied by any x, y of R and thus there may exist one or 
more solutions of this equation in the form of x = x1 + i x2 
which are imaginary objects of the region R (which we know 
as complex numbers). The equation f(z) = g(z) where f(z) = 
(|z|2 + 2) + 3i and g(z) = 1 + 3i can not be solved for z in C. 
This situation leads to the existence of at least one cim. 
Consequently, it is to be very carefully noted that although 
searching for x and y from R for satisfying the equation x2 + 
y2 + 1 = 0 and searching for z satisfying the equation f(z) = 
g(z) where f(z) = (|z|2 + 2) + 3i and g(z) = 1 + 3i are basically 
same type of problems, but these two searching are to be 
executed on two different platforms (two different regions). 
In the first case we do search for real numbers x and y from 
the jurisdiction R only, whereas in the second case we do 
search for a complex number z from the jurisdiction C only. 
We must be careful about our boundary of the concerned 
region while searching for solutions of valid equations in that 
region. Thus, there is no confusion in the existence of at least 
one atomic cim of C, but its precise identification and details 
characterization are to be done. 

History says that after the discovery of the rim i, a new 
number system took shape which is the set C of complex 
numbers. It is to be philosophically viewed that the existing 
notion of ‘complex numbers’ is with respect to its base ‘real 
numbers’. In this sense ‘5i’ is an imaginary number to the set 
R, not to the set C. To the set C the number ‘5i’ is a core 
family-member. It is to be clearly understood that the issue of 
‘imaginary’ or ‘complex’ is an relative issue, but local to the 
concerned region. One object may be a core family (not an 
imaginary object) to a region A, but it could be an imaginary 
object to another region B (not a core family member)!. 

Thus our history says that the set R of real numbers is 
conceptualized first, and later by the discovery of i the 
mathematicians discovered the birth of the classical set C of 
complex numbers. In an analogous way we claim that 
picking-up the region C and by the discovery of the cim e 
(and other atomic cims, if exist of C) has led to the discovery 
of a new set of numbers. Let us call this new set by the set of 
“Compound Numbers” denoted by E. Our immediate need is 
to discover the fundamental operations on E (like additions, 
multiplications, etc.) and then to study E as a possible 
algebra, and more. It is obvious that E forms a group with 
respect to the binary operator ‘+’ defined as below : 
for the compound numbers d1 = z11 + e z12 and d2= z21 + e z22 
of E, define (d1+ d2) by d1+ d2 = (z11+ z21) + e (z12 + z22), 
which is obviously a compound number in E. 

In the “Theory of Objects”, the set E of Compound 
Numbers introduced here is presently just at its infant stage, 
but undoubtedly it is a new set of numbers discovered here. 
With a rigorous amount of research work on the set E of 
numbers, it will surely take its own shape in future to update 
the existing classical “Theory of Numbers”. Without giving 
further justifications, we claim that there are many more sets 
of numbers (besides the set E of numbers) yet to be 
discovered. The next subsection will now show another new 
direction about the existence of many new sets of numbers. 

Subsequently in due time, by the discovery of many new 
sets of numbers more, we need to revisit many of the existing 

famous results, viz: 
(i) R, C, H, O are the only normed division algebras. 
(ii) the only associative real division algebras are real 

numbers, complex numbers, and quaternions. 
(iii) The Cayley algebra is the only non-associative 

division algebra. 
(iv) The algebras of real numbers, complex numbers, 

quaternions, and Cayley numbers are the only ones where 
multiplication by unit "vectors" is distance- preserving. 

2.4. “Theory of Numbers”: Every Complete Region Has Its 

Own 

In the previous Subsection 2.1 and 2.2, while introducing 
the notion of prime and composite objects and then the 
notion of imaginary and compound objects, we have consider 
a general region which need not be a complete region (see 
Figure 4). There are regions which are complete and there are 
regions which are not. In this section we introduce a new 
type of “Theory of Numbers” corresponding to every 
complete region. It has been shown in subsection-4.9 in [11] 
that corresponding to a region A, there may exist infinite 
number of distinct complete regions (i.e. 1-D complete 
regions). 

 

Fig. 4. Collection of all regions (Complete and Not Complete). 

 

Fig. 5. Collection of all complete regions, each has its own unique‘Theory of 

Numbers’. 
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2.4.1. “Theory of A-numbers” of a Complete Region A 

In this subsection we develop a new theory called by 
“Theory of A-numbers” corresponding to a complete region 
A. Corresponding to every complete region A, we derive a 
corresponding unique new ‘Theory of Numbers’ called by 
“Theory of A-numbers”. If RR, A, B, C, … are the 
complete regions in region algebra, then the corresponding 
number theories are : “Theory of RR-numbers”, “Theory of 
A-numbers”, “Theory of B-numbers”, “Theory of C-
numbers”,... etc. respectively, as shown in Figure 5. If a 
region K is not a complete region, the “Theory of K-
numbers” does not exist for it; however the topics of prime 
and composite objects, imaginary and compound objects, can 
be well studied in any region K, be it a complete region or 
not. 

I. Object Linear Continuum Line in a complete region A 

The notion of ‘Object Linear Continuum Line’ in a 
complete region A is explained earlier in details in Section-4 
in [11]. It is mentioned earlier that by a complete region, we 
mean 1-D complete region. A line can be drawn on which 
one point may be fixed to be the location for the object 0A, 
with all positive objects of A having their respective 
locations to the right and all negative objects of A having 
their respective locations to the left of 0A, as explained in 
subsection 4.1 and subsection 4.6 in our earlier work in [11]. 
Thus the ‘positive direction’ of the line can be called to be 
XA-axis and the ‘negative direction’ of the line can be called 
to be XA

1-axis. And the line which the objects of the 
complete region A is considered to lie upon is called the 
Object Linear Continuum Line for the complete region A 
(see Figure 6). 

 

Fig. 6. Object Linear Continuum Line of the complete region A, a general 

view. 

By distance between two objects x and y of the complete 
region A, we mean the corresponding metric distance ρ (x,y) 
of the normed complete metric space A. The distance of a 
positive object xA from the origin is Ax  = ρ (xA,0A) = xa, 

and the distance of a negative object ∼ xA from the origin is 
= -xa. See a collection of consecutive equi-spaced points on 
the object line as shown in the Figure 7 below. 

 

Fig. 7. Object Linear Continuum Line of the complete region A with a 

collection of consecutive equi-spaced object points. 

The term ‘equi-spaced’ in the caption of Figure 7 is to be 
well understood in the sense of the corresponding metric (or 
norm) of the complete region A, i.e. for any real number r, ρ
(r • 1A, (r+1) • 1A) = positive constant (independent of the real 
number r), in the complete region A. But this constant real 
value is different for different complete regions. For the 
complete region RR, this constant real value is equal to the real 

number 1. 
Since A = (A, ⊕ ,*, • ) is complete (normed complete 

metric space), there are no "points missing" from it (inside or 
at the boundary). Since A is a chain, every object of A has a 
unique address on this Object Linear Continuum Line 
XA

1XA; and conversely i.e. corresponding to every address 
(point) on this Object Linear Continuum Line XA

1XA there is 
a unique object of the region A. 

II ‘Unit Length’ &‘Inverse Unit Length’ in a complete 

region A 

Consider a complete region A = (A, ⊕ ,*, • ). If xA is a 
positive object on the object linear continuum line, then the 
distance of xA from the point O (the location of the object 0A 
on the object linear continuum line XA

1XA) is denoted by xa 

which is a positive real number (we use the classical 
practiced convention to say that ~xA is at a distance of –xa 
from the point O, although as per definition of metric a 
distance can not be a negative quantity. 

For xA∈A, we have 

Ax  = 
       

      negative 
a A

a A

x if x is a positive object

x if x is a object−




 

because ρ (0A, xA) = ρ (0A, ∼ xA) = ax . 
Corresponding to the unit element 1A of the complete 

region A, the positive real number 1a (where 1a= ║1A║ = ρ
(0A, 1A)) is called the ‘unit length’ in the Theory of A-
numbers. Surely ‘unit length’ is a real number and is constant 
in the ‘Theory of A-numbers’, but may be different for 
different complete regions. That is, ‘unit length’ of the 
‘Theory of A-numbers’ is not necessarily equal to the ‘unit 
length’ of the ‘Theory of B-numbers’. Thus, if A, B, C, …… 
are complete regions, then the respective unit lengths 1a, 1b, 
1c,...... are not equal in general. Clearly 0a being the ║0A║ is 
equal to the real number 0, and it may also be noted here that 
in general 1a ≠ 1 (where 0 is the 0RR i.e. 0 is the classical real 
number 0 of R; and 1 is the 1RR i.e 1 is the classical real 
number 1 of R). 

Suppose that 1/1a = ǝa (see the ‘division Type-IV’ in the 
four types of division in a region algebra explained in 
subsection 3.2.9 in [11]). The positive real number ǝa is 
called the ‘Inverse Unit Length’ in the complete region A. 
Surely ‘inverse unit length’ is a real number and is constant 
in the ‘Theory of A-numbers’, but may be different for 
different complete regions. That is, ‘inverse unit length’ of 
the ‘Theory of A-numbers’ is not necessarily equal to the 
‘inverse unit length’ of the ‘Theory of B-numbers’. It is 
also obvious that neither the unit length nor the inverse unit 
length can be equal to 0 in the ‘Theory of A-numbers’ 
corresponding to any complete region A. Clearly 1a. ǝa = 1 
and in general 1a ≠ ǝa in the complete region A. However, 
for the particular complete region RR, we have 1rr = ǝrr = 1 
(= 1RR) which is one of the most beautiful properties of the 
set R of real numbers, and also it is one of the most 
powerful properties of R. Out of several reasons, this 
property is one of the leading property due to which most of 
our real life problems and practices suit the set R of real 
numbers. 
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III ‘Ontegers’ in the complete region A 

In this subsection we introduce the notion of ‘Onteger’ in 
a complete region A = (A, ⊕ ,*, • ). The word ‘onteger’ is 
not a valid word in English dictionary. It is an abbreviated 
word for “Object Integer”. The concept of ‘ontegers’ will 
be the basic element in developing the ‘Theory of A-
numbers’. 

Consider an object xA in the complete region A. Consider 
the real number xa/1a i.e. xa. ǝa which let us denote by the 
symbol x. Thus x ia a real number given by x = xa/1a = xa. ǝa. 

Thus xA = x • 1A, ║xA║ = xa where xa = x.1a ∀ xA ∈ A 
where xA is a positive object; and ∼ xA = -x • 1A, ║ ∼ xA║ = 
xa where xa = x.1a ∀ ∼ xA∈A but ∼ xA is a negative object. 

It may be noted here that in general 1a ≠ 1, and in a similar 
way xa ≠ x. However it is obvious that for the particular 
instance of the complete region RR, we have xrr = x (= xRR). 

Onteger 

If m is any real integer, then the object mA of the complete 
region A is called an ‘object integer’ or ‘onteger’ in the 
‘Theory of A-numbers’. 

Thus the ontegers in the ‘Theory of A-numbers’ are 0A, ⊕
1A, ~1A, ⊕ 2A, ~2A, ⊕ 3A, ~3A, ….. etc. The ontegers ⊕ 1A, 
⊕ 2A, ⊕ 3A, ⊕ 4A, …….. etc. are ‘positive ontegers’ and the 
ontegers ~1A, ~2A, ~3A, ~4A, …….. etc. are ‘negative 
ontegers’ in the ‘Theory of A-numbers’. The onteger 0A is 
neither a positive onteger nor a negative onteger. Obviously, 
the set of all ontegers of the complete region A is a countable 
set. However, it may be true that norm of some of the 
ontegers of the complete region A are integers in R. In a 
complete region A, the ontegers 0A, ⊕ 2A, ~2A, ⊕ 4A, 
~4A, …..are even ontegers and the ontegers ⊕ 1A, ~1A, ⊕ 3A, 
~3A ⊕ 5A, ~5A …….. are odd ontegers. 

It is to be carefully noted that corresponding to any 
onteger ⊕ mA of the complete region A, the distance ma of 
it from the point 0A on the object line is a real number but 
need not necessarily is a real integer of classical notion; and 
similarly corresponding to any onteger ~mA, the distance -
ma is a real number but not necessarily is a real integer. The 
classical notion of integers in the classical ‘Theory of 
Numbers’ is just a special case of ontegers which is 
corresponding to the “Theory of RR-numbers’. 
Corresponding to every complete region A, there is a 
unique “Theory of A-numbers”. Consider the complete 
regions RR, A, B, C, D, … etc. and the corresponding 
“Theory of RR-numbers”, “Theory of A-numbers”, “Theory 
of B-numbers”, “Theory of C-numbers”, “Theory of D-
numbers”… respectively. If we imagine one common 
Object Linear Continuum Line for all these different 
complete regions RR, A, B, C, D, ….. etc. with the 
respective zero elements 0, 0A, 0B, 0C, 0D, … being situated 
at exactly the same point on this common Object Linear 
Continuum Line, then it is obvious that the respective unit 
elements 1(1RR), 1A, 1B, 1C, 1D, … etc. will be situated in 
general at different points on the common line because of 
the fact that the ‘unit length’ is region-dependent (see 
Figure 8) 

 

Fig. 8. Ontegers for “Theory of RR-numbers”, “Theory of A-numbers” and 

“Theory of B-numbers” (a comparative view). 

Thus, for any given real number x, in general the points x, 
xA, xB, xC, xD, … etc. will be situated at different locations if 
placed on the common Object Linear Continuum Line, 
assuming that the respective zero elements 0, 0A, 0B, 0C, 
0D, … are situated at exactly the same coincident point on 
this common Object Linear Continuum Line. 

However, for a given complete region A the distance 
between two consecutive ontegers on the object linear 
continuum line will be always a constant real number; but 
this real constant value will be different for different 
complete regions. 

Thus, we have for the complete region A, 

 

and similarly for the complete region B, 

 

But, in general, ρ  (0A, 1A) ≠ ρ  (0B, 1B). 
(here it is needless to mention that the metric ρ  for the 

complete region A and the metric ρ for the complete region 
B are two different metrics, in general. There should not be 
any confusion in it). 

For any real number r, ρ (r • 1A, (r+1) • 1A) = positive 
constant 1a (independent of the real number r), in the 
complete region A. But this constant real value is different 
for different complete regions because of the fact that the real 
numbers 1a, 1b, 1c, ….. are not necessarily equal. For the 
complete region RR, this constant real value is equal to the 
number 1. For any real numbers r and k, ρ (r • 1A, (r+k) • 1A) 
= |k|.1a. 

On the RR region line i.e. on the real number line, distance 
of the object ⊕ 1RR or ~1RR from the object 0RR (i.e. distance 
of the real number +1 or -1 from the number 0) is of ‘unit 
length’ and is popularly called by us by the word ‘unit’ or 
‘one’. It may be recalled that for every xA∈A, xa is in R. 

Consider a common object linear continuum line for both 
the “Theory of RR-Numbers” and the “Theory of A-
Numbers”, with 0RR and 0A situated at a coincident point on 
the line. Then it may happen that the point on the line 
representing the integer 1 (onteger 1RR) is not the point 
representing an onteger of the “Theory of A-Numbers”. 
Conversely, it may happen that the point on the line 
representing the onteger 1A of the “Theory of A-Numbers” is 
not the point representing an integer of the “Theory of RR-
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Numbers”. The main source of such differences lies in the 
difference of size of ‘unit length’ of different complete 
regions in the “Theory of Objects”. 

Thus ‘Theory of A-numbers’ is different for different 

complete region A in the “Theory of Objects”, whereas the 

complete vast amount of the classical ‘Theory of Numbers’ 

being available in the existing literature and being practiced 

by us traditionally so far in our everyday life is just a 

fractional content of the ‘Theory of RR-numbers’ in the 

context of the “Theory of Objects”. 

The following proposition is now straightforward and a 
quite important result in the ‘Theory of A-numbers’. 

Proposition 2.4.1 

Corresponding to a real number x (-x), there is a unique 
object ⊕ xA (~xA) in the complete region A and hence a 
unique corresponding real number xa (-xa) which in general, 
not equal to the real number x (-x). 

IV. ‘RA value’ of a real number x 

Let A be a complete region. Corresponding to the 
complete region A, consider the 1-to-1 mapping RA : R → R 
defined by 

RA(x) = x.1a = xa ∀ x ∈ R. Then the real number xa is 
called the ‘RA value’ of the real number x denoted by RA(x) = 
xa corresponding to the complete region A. Clearly, in that 
case RA(-x) = -xa. Also RA(0) = 0a, and RA(1) = 1a. 

For xA∈A, we have 

Ax  = ( )AR x  = 
       

      negative 
a A

a A

x if x is a positive object

x if x is a object−




 

because ρ (0A, xA) = ρ (0A, ∼ xA) = ax . 
It is obvious that RRR: R → R is an identity mapping for 

the particular case of the complete region RR. 
V. ‘Set of R values’ and ‘Set of R objects’ corresponding to 

a real number x in the “Theory of Objects”. 

If RR, A, B, C, D, … are the complete regions in the 
complete region universe Ʃ, then for any given real number x 
the set Ʃx = {xrr (= x), xa, xb, xc, xd, ……} is called the ‘Set of 
R values’ of the real number x in the region universe Ʃ. And 
the set ƩX = {xRR (= x), xA, xB, xC, xD, ……} is called the ‘Set 
of R objects’ of the real number x in the region universe Ʃ. 

Although we call Ʃx a set, it is a mistake because Ʃx could 
be a multiset (bag) too. However, if there is no confusion we 
will continue here calling it a set. For details about the 
concept of distance (metric space) introduced in multisets, 
one could see [10]. Thus, the collection of R values of the 
real number 1 is the set (multiset) of all unit length values 
forming Ʃ1, and the collection of R values of the real number 
0 is the set (multiset) Ʃ0. 

VI. Natural A-ontegers’ and ‘Natural A-real numbers’ of a 

complete region A 

In the Theory of A-numbers, the positive ontegers ⊕ 1A, 
⊕ 2A, ⊕ 3A, ⊕ 4A, … are called the Natural A-ontegers and 
the corresponding positive real numbers 1a, 2a, 3a, 4a, … are 
called the ‘Natural A-real numbers’. 

For instance, in the ‘Theory of RR-numbers’, the Natural 
RR-ontegers are 1RR, 2RR, 3RR, 4RR, … and the Natural RR-
real numbers are 1rr, 2rr, 3rr, 4rr, …. Here, as a particular case, 

the Natural RR-ontegers and Natural RR-real numbers are 
same numbers i.e. the classical natural numbers 1, 2, 3, 
4, ….. 

Let us consider three complete regions RR, A and B. The 
natural RR-real numbers (i.e. the classical natural numbers), 
natural A-real numbers and natural B-real numbers, all being 
real numbers only, can be plotted on the real line. It can be 
observed that the consecutive natural RR-real numbers are 
equi-spaced on the real line, and the same is true for 
consecutive natural A-real numbers on the real line i.e. the 
consecutive natural A-real numbers are equi-spaced on the 
real line. Similarly, the consecutive natural B-real numbers 
are equi-spaced on the real line. But the unit lengths are 
different for different object linear continuum lines 
corresponding to different complete regions. 

Consider the positive real number x ∈ R, and any three 
complete regions say RR, A and B. The corresponding three 
objects of the set ƩX are given by: xRR (i.e. x itself) on the 
XRR-axis, xA on the XA-axis, and xB on the XB-axis are shown 
in Figure 9, assuming that the respective zero elements 0RR 
(i.e. 0), 0A and 0B are situated at exactly the same coincident 
point on a common object line. Corresponding to a pre-fixed 
real number x, the three elements xRR, xA and xB of ƩX in the 
three theories : “Theory of RR-numbers”, “Theory of A-
numbers” and “Theory of B-numbers”, are shown in Figure 9 
for a comparative view. 

On their respective axis of linear continuum, the object x is 
at a distance x from ORR (i.e. O), the object xA is at a distance 
xa from OA and the object xB is at a distance xb from OB. Here 
xrr = x.1rr (where xrr= x and 1rr = 1), xa = x.1a, and xb = x.1b. 
The three real numbers 

(i) 1a (the metric distance of the unit object 1A from the 
centre point OA), 

(ii) 1b (the metric distance of the unit object 1B from the 
centre point OB) and 

(iii) 1rr or 1 (the metric distance of the unit object 1RR 
from the centre point ORR) 

are not equal in general, a hypothetical case about which can 
be realized from the Figure 8, where 1b< 1rr (=1) < 1a. 

 

Fig. 9. Three elements of ƩX corresponding to common real number x in the 

three theories: “Theory of RR-numbers”, “Theory of A-numbers” and 

“Theory of B-numbers” (a comparative view). 

It is justified in Subsection-4.9 in [11] that we can define 
infinite number of distinct 1-D complete regions 
mathematically. The proof of the earlier Proposition 2.2.1 is 
now presented in the following proposition. 

Proposition 2.4.2 

Every complete region with characteristic zero has at least 
one imaginary object. 
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Proof. Consider any complete region A = (A, ⊕ ,*, • ) 
whose characteristic is zero. In our literature, by complete 
region we mean 1-D region calculus. We take help of an 
example here. Consider the equation 2

Ax  + 1A  = 0A  in the 
region A. 

We see that the equation 2
Ax  + 1A  = 0A  is not satisfied by 

any object of A, where both LHS and RHS of this equation 
are valid expressions in A. Let us prove it by contradiction. 

i.e. if possible, suppose that for an object Ax  of A we have 

2
Ax  + 1A  = 0A  

Or, 2( 1 )Ax •  + 1A  = 0A  

Or, 2 21Ax •  + 1A  = 0A  

Or, 2( 1) 1Ax + •  = 0A  

By Proposition 3.5 of [11], either (x2 + 1) = 0 or 1A = 0A 
which is a contradiction. Therefore, there is no real object xA 
of the region A which can satisfy the equation 

2 1 0A A Ax + =  

Consequently, it produces one imaginary object of the 
complete region A which is ∋  (say). Hence the result.

 
(Note: It may be seen that the equation 2

Ax  + 1A  = 0A

produces different imaginary objects for different complete 
regions A. It may also be noted that C does not form an 1-D 
region calculus (i.e. 1-D complete region), but it does not 
mean that C will not have any imaginary object.) 

Proposition 2.4.3 

If A is a complete region, then ∃  infinite set of trio x, y, z 
∈  A such that the relation n n nx y z⊕ =  is satisfied for n = 2. 

Proof. Take the case for x = 3A , y = 4A  and z = 5A . 

23A ⊕
24 A  = 2(3 1 )A• ⊕

2(4 1 )A•  

= 2 2(9 1 16 1 )A A• + •  

= 225 1A•  

= 2(5 1 )A•  

= 25A  Hence proved. 

2.4.2. “Theory of C-numbers” Can not Be Developed in C 

It can be observed that ‘Unique Factorization Theorem’ 
holds good in the Theory of objects in any complete region 
A. The existing rich literature on Algebra or Number Theory 
does not say what is the minimum algebraic system on which 
such type of famous theorems of Number Theory hold good. 
In this work the same is identified to be a complete region. 
Otherwise the question does not arise to explore the above 
results of Number Theory and their validity. Many of the 
classical famous results of Number Theory are established 
during last three centuries but the platform on which they 
stand valid was not identified (although it is a very important 

information to the number theorists). These results can not be 
established in a division algebra or in any standard algebraic 
system alone, and even not in a region in general. It must be 
a complete region! This information is an important 
breakthrough for the Theory of Numbers. The existing 
Theory of Numbers (in particular, real numbers) are based 
upon the set R of real numbers which fortunately forms a 
complete region! And consequently the number theorists of 
the existing Theory of Numbers (real numbers) have not 
faced any issue or contradiction while fluently exercising all 
the properties of R at full freedom. The region C (of complex 
numbers) does not satisfy the required conditions to become 
a 1-D calculus space with respect to its popular norm |z| = 

2 2z z z x y= = + . No 1-D region calculus can be 

developed in C, and hence C is not a 1-D complete region. 
Consequently, a number theory of type ‘Theory of C-
numbers’ can not be developed in C, although the concept of 
prime and composite objects, imaginary and complex 
objects, etc. can be well studied in C. However, in our future 
work we need to explore whether C forms a multi-
dimensional complete region; and if so then we may explore 
the possibility of discovering a number theory of type 
‘Theory of C-numbers’ with multi-dimensional approach as 
mentioned in the section-4.8 in [11]. 

With the notion of “Theory of Objects” introduced here, it is 
sure that in due time the ‘Number Theorists’ can be re-
designated with a new title ‘Object Theorists’ as the areas of 
cultivation will not be limited to just numbers but to the objects. 

3. “Region Geometry”: Every Complete 

Region Has Its Own 

In Section-4.9 it is observed that we can define infinite 
number of distinct 1-D complete regions mathematically in 
Region Mathematics. It is also mentioned that by a complete 
region, we shall always mean 1-D complete region. In the 
previous section the notion of ‘Theory of A-numbers’ of a 
complete region A is developed. We are now in a position to 
initiate a corresponding ‘Geometry’ on the complete region A 
in the “Theory of Objects”. The “Theory of Objects” thus 
induces a new giant area which is to be called here by ‘Region 
Geometry’ in a complete region. Corresponding to every 
complete region, there is a ‘Region Geometry’ of its own. But 
the ‘Region Geometry’ for different complete regions are 
different. We will see that our rich classical geometry of the 
existing notion is just a particular case of ‘Region Geometry’. 
We begin the subject by introducing first of all a 2-D region 
geometry developed over an 1-D complete region. 

In the Theory of Objects, for developing a new geometry 
called by “Region Geometry”, be it in a two dimensional 
region coordinate system, or in an n-dimensional region 
coordinate system, at least one 1-D complete region A = (A,
⊕ ,*, • ) is required. The work in this section in fact is sequel 
to the previous Sections 4 of [11] and Section 2 of the present 
article. Consider the object linear continuum line and the XA-
axis corresponding to the complete region A. Consider a 
point xA (a positive object) on the XA-axis. Then for an 
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infinitesimal small positive object ∆xA, the point (xA ⊕ ∆xA) 
will be at a distance ║∆xA║ from the point xA along the 
positive direction of XA-axis and the point (xA ∼ ∆xA) will be 
at a distance ║∆xA║ from the point xA along the negative 
direction XA

1-axis; and in fact all the objects of the complete 
region A are well ordered in this sense, as explained in 
details in Section-4 in [11]. In this section we incorporate 
“YA-axis” (it is same as XA-axis but placed at right angle to 
the XA-axis passing through the point 0A) and thus construct 
a region coordinate plane in the “Theory of Objects” in the 
style of Cartesian coordinate system. 

3.1. The Coordinate Plane of Complete Region  

We introduce first of all 2-D region geometry in a 1-D 
complete region A = (A, ⊕ ,*, • ). It is a system of geometry 
where the position of points on the plane is described using 
an ordered pair of objects, analogous to the case of Cartesian 
coordinate plane. We call this plane by Region Coordinate 
Plane. A plane is a flat surface that goes on forever in both 
directions. If we were to place a point on the plane, region 
coordinate geometry gives us a way to describe exactly 
where it is by using two objects. Points are placed on the 
"region coordinate plane" as shown below in Figure 10. It 
has two scales: one running across the plane called the "XA-
axis" and another at right angles to it called the “YA-axis”. 
Both these axes are thus object linear continuum lines 
corresponding to the complete region A. The point where the 
two axes cross is called the origin denoted by OA at which 
both xA and yA are 0A. On the XA-axis, as explained earlier 
that objects to the right of origin are positive objects and 
those to the left are negative objects of A. Similarly, on the 
YA-axis, objects above the origin are positive objects and 
those below the origin are negative objects of A. 

 

Fig. 10. Objects coordinates on region coordinate plane of the complete 

region A. 

A point's location on the region coordinate plane is given 
by two objects in the form of object coordinates (xA,yA), the 
first coordinate reveals where it is away from the YA-axis at 
parallel to the XA-axis and the second coordinate reveals 
where it is away from the XA-axis at parallel to the YA-axis 

(see Figure 10 above). There are four quadrants and sign 
convention rule is same as that of classical Cartesian 
coordinate geometry. 

3.2. Slope of an Object Line on the Region Coordinate 

Plane 

Slope of an object line passing through the two object 
points P(x1A,y1A) and Q(x2A,y2A) is the real number ma given 
by (as shown in Figure 11): 

ma = tan θ = 2 1

2 1

a a

a a

y y

x x

−
−

 where 2ay  = ║ 2Ay ║ etc.  

= 2 1

2 1

1 1
1 1

a a

a a

y y

x x

⋅ − ⋅
⋅ − ⋅

 

= 
2 1

2 1

y y

x x

−
−  

 

Fig. 11. Slope of an objects line. 

This implies that slope of a line does not depend on the 
‘unit length’ of the concerned complete region. It is an 
absolute quantity irrespective of the complete region on 
which the region coordinate plane is drawn. Thus, slope of a 
line is region-independent. 

Proposition 3.1 

Pythagoras Theorem is valid in every Region Geometry, 
whatever be the corresponding complete region A. 

Proof: 
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Fig. 12. (a),(b) Two right angled triangles in two region coordinate planes 

respectively. 

Consider the Region Geometry corresponding to the 1-D 
complete region A. Let PQR be a right angled triangle (the 
angle PQR being the right angle) on the region coordinate 
plane of the complete region A (Figure 12(a)). Consider also 
the 1-D complete region RR. Suppose that the region 
coordinate plane of A does also represent the region 
coordinate plane of RR taking same lines as two axes and 
taking the same location for origin (i.e. OA and ORR are co-
incident points). 

Now, using the homogeneity property (see subsection 4.4.1 
in [11]) of the metric ρ (x, y) = ║x~y║, we can find a right-
angled triangle ABC on the real Cartesian coordinate plane 
i.e. on the region coordinate plane of RR region, where 

PQ

AB
= 

QR

BC
= 

PR

AC
 = 1a                            (1) 

Since slope of a line is region-independent, the right-
angled property of the classical triangle ABC is guaranteed 
(the angle ABC being the right angle, see Figure 12(b)) on 
the Cartesian coordinate plane from the right-angled 
property of the triangle PQR on the region plane of 
complete region A. Since Pythagoras theorem is valid in the 
triangle ABC, it is also so in the triangle PQR using result 
(1). Hence proved. 

3.3. Distance Between Two Object Points on a Region 

Coordinate Plane 

Distance between two object points on a region 
coordinate plane can be defined in various ways like in 
classical geometry. However, we follow the style of 
Eucledian distance in Region Geometry. Consider the XAYA 

region coordinate plane corresponding to the complete 
region A. Let P(x1A,y1A) and Q(x2A,y2A) be two points on 
this region plane (see Figure 13). Distance PQ between 
these two points in Region Mathematics is the positive real 
number ra, where 

. 

It may be recollected that for any object xA we have the 

relation xA= x • 1A, the standard notations used in the ‘Theory 
of A-Numbers’. We now see that 

ra = { }
1

2 2 2
2 1 2 1A A A Ay y x x+∼ ∼  

or,  ra = { }
1

2 2 2
2 1 2 11 1 1 1A A A Ay y x x• • + • •∼ ∼  

or, ra = { }
1

2 2 2
2 1 2 1( ) 1 ( ) 1A Ay y x x− • + − •  

or, ra = { }
1

2 22 2 2
2 1 2 1( ) . 1 ( ) . 1A Ay y x x− + −  

or, ra = { }
1

2 2 2 2 2
2 1 2 1( ) .1 ( ) .1a ay y x x− + −  

or, ra = { }
1

2 2 2
2 1 2 1( ) ( ) .1ay y x x− + −                  (2) 

 

Fig. 13. Distance between two object points. 

As a particular case if we take the complete region RR 
where 1rr = 1, then the above formula reduces to the classical 
Eucledian distance formula: 

 

                (3) 

It may be noted that the distance between two points 
P(x1A,y1A) and Q(x2A,y2A) is region dependent and also 
dependent upon the properties of the chain and the norm of 
the complete region. 

3.4. Equation of an Object Line 

Consider the XAYA region coordinate plane corresponding 
to the complete region A (see Figure 14). The general equation 
of an object line whose slope is ma is yA = ma • xA ⊕ cA. 
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Equation of an object line having slope ma and passing 
through the object point Q(x1A,y1A) is (yA ~ y1A) = ma •  (xA ~ 
x1A). 

Equation of an object line passing through the two object 
points P(x1A,y1A) and Q(x2A,y2A) is 

. 

 

Fig. 14. An object line having positive intercept of length ca on YA axis. 

3.5. Object Circle on a Region Coordinate Plane 

Consider the XAYA region coordinate plane corresponding 
to the complete region A (see Figure 15). Then the equation 
of an Object Circle with centre at (0A, 0A) and radius ra (>0) 
is given by 

( )( ) ( )( )2 2
,0 ,0A A A Ax yρ ρ+ = ra

2 

which can be written as 

2 2
A Ax y+  = ra

2 

or, xa
2+ya

2 = ra
2                                      (4) 

or, x2.1a
2 + y2.1a

2 = r2.1a
2 

or, x2 + y2 = r2                                        (5) 

Thus x2 + y2 = r2 represents the equation of the object 
circle C1 with radius ra and centre at (0A, 0A) on the region 
coordinate plane of the region A. 

It is to be noted that x2 + y2 = r2 does also represent the 
equation of the object circle C2 with radius rb and centre at 
(0B, 0B), but on the region coordinate plane of the region B; 
and similarly x2 + y2 = r2 is also the equation of the object 
circle C3 with radius rrr (= r) and centre at (0RR, 0RR) i.e. at (0, 
0), but on the region coordinate plane of the region RR, etc. 
Each of these distinct circles C1, C2 and C3 has the common 
equation x2 + y2 = r2 but of different radii (viz. ra on the 
region coordinate plane of the complete region A, rb on the 
region coordinate plane of the complete region B, and rRR on 
the region coordinate plane of the complete region RR), as 
they are on different region coordinate planes. However, the 
circle C3 is our classical circle of classical plane geometry. 
Thus the general equation x2 + y2 = r2 of a circle is absolutely 

region-dependent. If one asks the questions : “What is the 
radius and centre of the circle x2 + y2 = r2? What is the area 
of it?”, then we can not answer immediately unless we know 
the identity of the concerned complete region i.e. of the 
concerned region coordinate plane. Consequently, these 
questions are incomplete questions if asked without 
mentioning the corresponding complete region. However, in 
classical geometry, by default it is the complete region RR. 

It is interesting to note that in Region Geometry the 
equation of a circle may be written either using the variables 
as in equation (4) or using the variables as in equation (5). 
Both the ways are equivalent in Region Geometry. As a 
special case both the types of variables happen to be same in 
classical geometry. 

  

 

Fig. 15. (a),(b). Objects circles. 

If 1a> 1, then the object circle x2 + y2 = r2 in the region 
coordinate plane of the region A is a bigger circle than the 
classical circle x2 + y2 = r2; if 1a< 1, then the object circle x2 
+ y2 = r2 in the region coordinate plane of the region A is a 
smaller circle than the classical circle x2 + y2 = r2; and if 1a = 
1, then the object circle x2 + y2 = r2 is of same size with the 
classical circle x2 + y2 = r2. 

Equation of an Object Circle with centre at (αA, βA) and 
radius ra (>0) is 
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(ya – βa)
2 + (xa – αa)

2 = ra
2 

or, (y – β)2 + (x – α)2 = r2 

Thus (y – β)2 + (x – α)2 = r2 represents the equation of the 
object circle C1 (say) with radius ra and centre at (αA, βA) on 
the region coordinate plane of the complete region A. Again, 
(y – β)2 + (x – α)2 = r2 does also represent the equation of the 
object circle C2 (say) with radius rb and centre at (αB, βB), but 
on the region coordinate plane of the complete region B, and 
similarly (y – β)2 + (x – α)2 = r2 is also the equation of the 
object circle C3 (say) with radius rrr (= r) and centre at (αRR, 
βRR) i.e. at (α, β), but on the region coordinate plane of the 
complete region RR, etc. Each of these distinct circles C1, C2 
and C3 has the equation (y – β)2 + (x – α)2 = r2 but of 
different radii as they are on different region coordinate 
planes. However, the circle C3 is our classical circle of 
classical plane geometry. Thus the general equation (y – β)2 + 
(x – α)2 = r2 of a circle is absolutely region-dependent. 

The classical geometry (2-D geometry, 3-D or higher 
dimensional geometry) being practiced by the world 
mathematicians at elementary [18] or higher level is a 
particular case of the ‘Region Geometry’. In the “Theory of 
Objects”, the ‘Region Geometry’ introduced here is just at its 
infant stage. With a rigorous amount of research work, it will 
surely take its own shape in future to update the existing 
classical subject “Geometry”. 

4. Conclusion 

As mentioned in [11] that the work on “Region 
Mathematics” was not initiated in my mind with any pre-
posed problem or plan. I did not have any pre-proposed 
synopsis for it. It was an accidental development in my mind 
while I observed that in general the existing standard 
algebraic systems alone viz. groups, rings, modules, fields, 
linear spaces, algebra over a field, associative algebra over a 
field, division algebra, etc. can not validate many of the 
fundamental and classical equalities, identities, expressions, 
equations, formulas, results of “elementary algebra” (of 
secondary school level or higher level) by virtue of their 
respective definitions and properties. For details about 
Region Algebra and Region Calculus, one could see the work 
[11]. The region algebra is applied in the newly discovered 
“NR-Statistics” [10] in which the population data are not 
always real numbers but any kind of other real life objects 
(viz. a population of 50 paints of beautiful TAJMAHAL by 
50 junior artists in a school level competition held at Calcutta 
High school, a collection of 10 X-ray images of a patient 
during last ten days in Calcutta Medical Hospital, etc. In 
“NR-Statistics” various new statistical region measures like : 
region mean, region standard deviation, region variance, etc. 
with algebraic approach (in the Algebraic Statistics part of 
NR-Statistics) were studied for real life NR-populations. 
Philosophically, if we consider the evolution of various 
algebraic systems, in particular considering their flexible 
roles and volume of contributing capabilities towards the 
subjects from ‘elementary algebra’ to ‘higher algebra’, we 

could visualize the unique location of “Region” as mentioned 
below, which has been unearthed in this work:- 

 

In Section-2 we introduce another new family member of 
Region Mathematics called by “Theory of Objects”. 
Although this theory is at its baby stage, but it is initiated 
here with three giant topics as follows: 

1. “Prime Objects” and “Composite Objects” in a Region 
2. “Imaginary Objects” and “Compound Objects” in a 

Region 
3. “Theory of Numbers”: Every Complete Region has its 

own 
The existing notion of ‘prime numbers’ is a special case of 

‘prime objects’, and the existing notion of ‘composite 
numbers’ is a special case of ‘composite objects’. We then 
define imaginary objects (if exist) of a region. As a particular 
case we study the existing notion of imaginary number i of 
the set R of real numbers, as a particular instance of 
imaginary object, which is called by ‘rim’. Another major 
breakthrough in “Region Mathematics” we unearth is that the 
region C (set of complex numbers) has at least one imaginary 
object. Any atomic imaginary object of Cis called by the 
notation ‘cim’ of C. One cim we have extracted here which 
we name by e. If x and y are in R, then corresponding to the 
rim i of R the object (x+iy) is a complex number but for the 
set R of real numbers. The object (x+iy) is a complex number 
locally in the jurisdiction of R. Analogously, if z1 and z2 are 
in C then corresponding to the cim e of C the object (z1 + e 
z2) is a compound number for the set C of complex numbers. 
The rim i is imaginary for R, not for C; and also the rim i is a 
core member of C, not of R. Thus rim i is a real object of C. 
The cim e is imaginary for C, not for any other region in 
general. Being the imaginary object in C, the cim e is not a 
member of C, i.e. not a real object of C. Thus we have 
happened to see now the birth of a new type of numbers 
called by ‘compound numbers’ of the form (z1 + e z2) where 
z1 and z2 are in C. All these compound numbers of the form 
(z1 + e z2) are so with respect to the cim e, but there could be 
more than one cim of C of atomic nature (which we can not 
rule out at this stage). The set of all compound numbers is 
denoted by E. We need to understand the set E more 
precisely, by identifying precisely all its members, 
characteristic properties, results, etc. which will be our future 
course of research work. In the “Theory of Objects”, the set 
E of Compound Numbers introduced here is just at its infant 
stage, but undoubtedly it is a new set of numbers discovered 
here. With a rigorous amount of research work on the set E of 
numbers, it will surely take its own shape in future to update 
the existing classical “Theory of Numbers”. 

For studying prime and composite objects, imaginary 
objects, etc. we have considered simple regions, not complete 
regions. But, mathematically there are infinite number of 
distinct complete regions exist in Region Mathematics. We 
then introduce another new theory called by “Theory of A-
numbers” which is developed if A is a complete region, 
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otherwise not valid. This new giant topic “Theory of A-
numbers” will surely grow in a lot of volume with time, the 
present work being just an initialization. We have identified 
‘What are the minimum properties which need to be satisfied 
by a set A so that a new Geometry can be developed over the 
platform A?’. It has been explained how the classical 
“Theory of Numbers” being practiced by the world so far 
happens to be a topic of “Theory of RR-numbers” where the 
“Theory of RR-numbers” is a particular instance of our new 
“Theory of A-Numbers” of a complete region A. In every 
complete region A, there are ontegers ……, ∼ 3A, ∼ 2A, ∼
1A, 0A, 1A, 2A, 3A, 4A, 5A, ….., and a particular instance of 
ontegers are the integers ….., -3, -2, -1, 0, 1, 2, 3, 4, ….. 
which are the ontegers in the complete region RR. Every 
complete region has its own “unit length”, like the unit length 
in the complete region RR is equal to the distance of the 
onteger (integer here) 1 from the onteger (integer here) 0. 

Consequently, upon the discovery of many more new types 
of numbers, and by the proposed ‘Theory of A-numbers’ 
corresponding to every complete region A, we need to revisit 
many of the existing famous results [13] in our future work, 
viz: 

(i) R, C, H, O are the only normed division algebras. 
(ii) the only associative real division algebras are real 

numbers, complex numbers, and quaternions. 
(iii) The Cayley algebra is the only non-associative 

division algebra. 
(iv) The algebras of real numbers, complex numbers, 

quaternions, and Cayley numbers are the only ones 
where multiplication by unit "vectors" is distance-
preserving. 

In Section-3 we introduce another new giant branch of 
Region Mathematics called by “Region Geometry”. 
Corresponding to every complete region there is a unique 
region geometry. The existing ‘classical geometry’ is one 
example of the “Region geometry” corresponding to the 
particular region RR. For a non-example, the set of all 
triangular fuzzy numbers (or the set of all trapezoidal fuzzy 
numbers) is closed with respect to the addition operator 
defined over them, but is not closed with respect to the 
multiplication operator defined over them [8, 9]. Thus the set 
of all triangular fuzzy numbers do not form a real region with 
respect to its commonly used operators (which can not open 
any platform to develop any calculus), and hence can not 
open any new Theory of A-Numbers or any new Region 
Geometry at the present form in “Region Mathematics : A 
New Direction In Mathematics”. The set C of complex 
numbers does not satisfy the required conditions to become a 
calculus space with respect to its popular norm z z z= . 
Thus no 1-D region calculus can be developed in C, and 
hence C is not a 1-D complete region with respect to 2-to-1 
bijection. Consequently, a number theory of type ‘Theory of 
A-numbers’ can not be developed in C, and due to same 
reason a region geometry too can not be developed in C; 
although the concept of prime and composite objects, 
imaginary and complex objects, compound numbers, etc. can 
be well studied in C. However if C forms a multi-
dimensional complete region (say 2-D complete region or n-

D) then C may open a new Theory of C-Numbers with multi-
dimensional approach (as mentioned in Section-4.8 in [11]) 
and its own Region Geometry, which is our future course of 
research work. 
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