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Abstract: Following Deissler’s approach the magnetic field fluctuation in MHD turbulence prior to the ultimatephase of 

decay is studied. Two and three point correlation equations have been obtained and the set of equations is made determinate by 

neglecting the quadruple correlations in comparison with second and third order correlations. The correlation equations are 

changed to spectral form by taking their Fourier transforms. The decay law for magnetic field fluctuations is obtained and 

discussed the problem numerically and represented the results graphically. 
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1. Introduction 

Magneto hydrodynamic (MHD) turbulence is 

characterized by nonlinear interactions among fluctuations of 

the magnetic field and flow velocity over a range of spatial 

and temporal scales. It plays an important role in the 

transport of energetic particles. Magneto hydrodynamics 

turbulence has been employed as a physical model for a wide 

range of applications in astrophysical and space plasma 

physics. The fundamental aspects of MHD turbulence include 

spectral energy transfer, non-locality, and anisotropy, each of 

which is related to the multiplicity of dynamical time scales 

that may be present. These basic issues can be discussed 

based on the concepts of magnetic Prandtle number of the 

small scales in the magnetic field. The magnetic Prandtle 

number defined as the ratio between the kinematic viscosity 

and the magnetic diffusivity. Boyd (2001) discussed 

Chebyshev and Forier spectral methods. Shebalin (2002) 

explained the statistical mechanics of ideal homogeneous 

turbulence. Biskamp (2003) obtained magneto hydrodynamic 

turbulence. Islam and Sarker (2001) developed the first order 

reactant in MHD turbulence before the final period of decay 

for the case of multi-point and multi-time. Shebalin (2006) 

also oriented ideal homogeneous magnetohydrodynamic 

turbulence in the presence of rotation and a mean magnetic 

field. Deissler (1958, 1960) developed a theory ‘on the decay 

of homogeneous turbulence for times before the final period.’ 

By considering Deissler’s theory, Loeffler and Deissler 

(1961) studied the decay of temperature fluctuation in 

homogeneous turbulence before the final period. Bkar Pk et 

al. (2013) illustrated the decay of MHD turbulence prior to 

the ultimate phase in presence of dust particle for four-point 

correlation. Chandrasekhar (1951) obtained the invariant 

theory of isotropic turbulence in magneto-hydrodynamics. 

Rahaman (2010) obtained the decay of first order reactant in 

incompressible MHD turbulence before the final period for 

the case of multi-point and multi-time in a rotating system. 

Corrsin (1951) considered the spectrum of isotropic 

temperature fluctuations in isotropic turbulence. In their 

approach they considered the two- and three-point correlation 

equations and solved these equations after neglecting the 

fourth and higher order correlation terms analytically. Here, 

two- and three-point correlation equations have been 

considered, and the same approach of Deissler (1960) is 

applied to a theory of decaying homogeneous turblence. 

Sarker and Kishore (1991) derived the problem decay of the 

MHD turbulence before the final period analytically. In this 

chapter, we have discussed the problem numerically and 

represented the results graphically. We have shown that if the 

magnetic diffusivity is constant and kinematic viscosity is 

transferable then the fluctuation of the decay curves is linear 
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and is parallel to the direction of �-axis and the decay is very 

small at constant time. 

2. Mathematical Formulation 

For two points, we need two equations. Let the induction 

equation of magnetic field at the point � is 
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and at the point �′ will be 
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where 

� = �
� + �

� �ℎ� ��
 is the total MHD pressure, 

!(�, #) is the hydrodynamic pressure, 

$ is the fluid density, 

�% = �
& is defined as the magnetic prandtle number, 

' is the kinematic viscosity, 

( is the magnetic diffusivity, 

ℎ)(�, #) is the magnetic field fluctuation, 

	)(�, #) is the turbulent velocity, 

# is the time, �
 is the space coordinate, and the repeated 

subscripts are summed from 1 to 3. 

Multiplying the equation (1) by ℎ*+
and (2) byℎ) we get 

respectively 
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Adding equation (3) and (4) and taking ensemble average 

with transformations 
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and Chandrasekhar’s relation (1951) 
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We have three dimensional Fourier transforms 

.ℎ)ℎ*′/(- ) = 7 .Ψ)Ψ* ′/9:�� ;<
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Integrating the subscripts D 012 E and then integrating the 

points � 012 �′, we have 
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Putting these three equations in (5) becomes 
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The above tensor equation becomes a scalar equation by 

contraction of the indices D 012 E 
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The term on the right hand side of the equation (9) is 

called energy transfer term while the second term on the left 

hand side is the dissipation term. 

We consider the momentum equation of MHD turbulence 

at the point �, and the induction equations of magnetic field 

fluctuation at �′ and �L as follows 
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Multiplying equation (10) by ℎ)ℎ*++
, (11) by 	)ℎ*++

 and (12) 
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, we obtain 
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Combining equations (13), (14), (15), and taking time 

average and using the transformation, we obtain 
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We get 
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where .UT)+T*
++/ is the pressure correlation. 

3. Results and Discussion 

The solution is obtained by considering the two-point 

correlation after neglecting the third order correlations the 

three point correlation equations is considered and the 

quadruple correlations are neglected. The terms .UT)+T*
++/ 

associated with the pressure correlations must be neglected. 

Thus, neglecting all the terms on the right hand side of the 

equation (2), we have 
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Following Sarker and kishore (1991) and using Loeffler 

and Deissler (1961) and assumption and then integrating 
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w.r.to cos d, we get, 
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function and k is the energy transfer term given by 
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k � 
 =√tno��
u�

�v���=�o�v���Y���u�
exp w=��x=x_�

�� . ��Y���
�Y�� �G�e H �p��
y

z����=�o����Y��� � w p���
��Y�������=�o� 
 g

����=�o�e G{ � ��
�Y�� w ���

��Y���� 
 1e G|I        (31) 

Solving the linear equation (29)and using Corrsin(1951) relation }�G� � ~o
�
t  is a constant,we get 

l � �_
�
t exp P
2 �
���=�o�

�� R � √tno��
u�

�v���Y�����
. exp w=�
���=�o���Y����

����Y��� e H g��
y

�����=�o�u�
� 9���� ={��;
�

g��Y�����=�o�v�

 z9g��� =���Yg;
�

g��Y������=�o���
�

|√�9g��� =���Yg;
�

g��Y���u���
��

����I              (32) 

where 

���� � �=�� 7 ����
^ 2�,� � G�H ���=�o�

����Y���I 
By setting 

- � 0, E � D, 

 

in the equation (20), we get the expression for magnetic 

energy decay as 
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which is the decay law for magnetic energy fluctuation 

before the final period. 

Now we are going to discuss the problem in numerical 

analysis: 

Table 1. If ( is fixed and ' varies from 0.05 to 0.15. 

j � �� � � � 

0.05 2 0.025 -4.96   10=�^ 6.97   10=p -0.064 

0.10 2 0.050 -7.24   10=| 1.971   10=z -0.144 

0.15 2 0.075 -1.08   10={ 3.622   10=z -0.190 

Table 2. Different values of A and B if ( is constant. 

j � �� � � � 

0.20 2 0.100 -5.27   10={ 5.576   10=z -0.164 

0.25 2 0.125 -2.08   10={ 7.791   10=z -0.170 

0.30 2 0.150 -5.645   10=p 1.024   10=g -0.155 

Table 3. Values of A and B  for the variation of '. 

j � �� � � � 

0.35 2 0.175 -1.262   10=z 1.291   10=g -0.137 

0.40 2 0.200 -2.453   10=z 1.577   10=g -0.120 

0.45 2 0.225 -4.293   10=z 1.882   10=g -0.103 

 

Figure 1. Energy decay curves for � �  6.97   10=p and  � �  0.064 , 

#^=0.4, 0.7, and 0.9. 
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Figure 2. Energy decay curves for  � =  1.971 × 10=z012 � = −0.144 , 

#^=0.4, 0.7, and 0.9. 

 

Figure 3. Energy decay curves for  � =  3.622 × 10=z012 � =
−0.190,#^=0.4, 0.7, and 0.9. 

If ( (magnetic diffusivity) is fixed and ' (kinematic 

viscosity) varies from 0.05 to 0.15 in Table 1, Magnetic 

Prandtle number �% is increased for increasing of kinematic 

viscosity (') because they are proportional to each other. 

 

Figure 4. Energy decay curves for  � =  5.576 × 10=z012 � = −0.164 , 

#^=0.4, 0.7, and 0.9. 

For fixed time (#^ =0.4, 0.7, 0.9) and for different values 

of � and �, the total energy .ℎ�/ is increasing from Figure 1 

to Figure 3. Here time (#) has been taken in the direction of 

�-axis and total energy .ℎ�/ in the direction of ¡-axis. In the 

direction of �-axis for time the limit has been taken from 1 to 

2 and in the direction of ¡-axis for total energy the limit has 

been taken from 0 to 7. 

When λ is fixed and ϑ varies from 0.20 to 0.30, different 

values of A & B in Table 2, the change of total energy is very 

small from Figure 4 to Figure 6. 

 

Figure 5. Energy decay curves for  � =  7.791 × 10=z012 � = −0.170 , 

#^=0.4, 0.7, and 0.9. 

 

Figure 6. Energy decay curves for  � = 1.024 × 10=g 012 � = −0.155 , 

#^=0.4, 0.7, and 0.9. 

 

Figure 7. Energy decay curves for  � =  1.291 × 10=g012 � = −0.137 , 

#^=0.4, 0.7, and 0.9. 
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Figure 8. Energy decay curves for  � =  1.577 × 10=g012 � = −0.120 , 

#^=0.4, 0.7, and 0.9. 

 

Figure 9. Energy decay curves for � = 1.882 × 10=g 012 � = −0.103 , 

#^=0.4, 0.7, and 0.9. 

Similarly, if ( is fixed and ' varies from 0.35 to 0.45 in 

Table 3, the straight line is smaller than that of Figure 5 

which has been shown in the Figure 9. 

But for fixed time and different values of � & � which has 

been indicated by Table 3, the total energy is decreasing 

slowly from Figure 7 to Figure 9. 

4. Conclusion 

From the above tables, figures and discussion we conclude 

that the following results: 

� When magnetic diffusivity is constant and kinematic 

viscosity is changeable then the Magnetic Prandtle 

number is proportional to the kinematic viscosity. 

� In the absence of non-dimensional quantity the total 

energy of magnetic field fluctuation is decaying very 

rapidly. 

� The magnetic field fluctuation of total energy is 

gradually increased at fixed time #^= 0.4, 0.7, and 0.9. 

� The energy decay is very small at constant time which 

has been shown in the Figure 6 to Figure 8. 
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