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Abstract: Global fifth degree polynomial spline is developed. Ideas applied in the field of high order WENO (Weighted 

Essentially non Oscillating) methods for numerical solving compressible flow equations are used to construct interpolation 

which has accuracy closed to accuracy of classical cubic spline for smooth interpolated functions, and which reduces undesirable 

oscillations often appearing in the case of data with break points. Fifth degree polynomial spline is constructed in two steps. 

Third degree spline is developed in first step by usage of additional stencils above three point central stencil, dealt in classical 

cubic splines. The Procedure of weights calculation provides choice of preferable stencils. Compensating terms are introduced to 

left side of governing equations for calculation of spline derivative knot values. This spline may be identical to classical cubic 

spline for “good” data. Damping of oscillations is achieved at the cost of reducing smoothness till C
1
. To restore C

2
 smoothness 

fifth degree terms are added to third degree polynomials in second step. These terms are chosen to provide continuity of the 

spline second derivative. Fifth degree polynomial spline is observed to produce lesser oscillations, then classical cubic spline 

applied to data with break points. These splines have nearly the same accuracy for smooth interpolated functions and sufficiently 

large knot numbers. 
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1. Introduction 

This paper is devoted to the development of polynomial 

piecewise spline. Piecewise interpolation schemes may be 

classified as local (see, for example, [1-5]), which may be 

calculated in any subinterval independently of other 

subintervals, and global, which calculation involves solving of 

the system of I or I*k equations, I – number of interpolation 

knots. Recent spline belongs to the second class, which contains, 

for example, rational splines [6, 7], discrete hyperbolic tension 

splines [8, 9]. It is known that high accuracy interpolations are 

connected with possible producing of undesirable oscillations 

near points of interpolated function discontinuities or points of 

discontinuities of the function first derivative.  

Similarly, numerical modeling of compressible flows by 

high order methods may be connected with producing of 

oscillations near flow discontinuities. Efficient algorithms are 

developed in this field, allowing to damp undesirable 

oscillations. There are two main families of high order 

methods, reducing oscillations. First family contains Total 

Variation Diminishing methods (started in [10]), which 

involves delimitation of some terms in discrete equations for 

modeling of compressible flows. Second family contains 

Essentially Non-Oscillatory and Weighted Essentially 

Non-Oscillatory methods (see, for example, [11, 12]), dealing 

with sets of numerical fluxes of the same order of 

approximation. Discrete analogies of conservation lows 

involve most “smooth” numerical fluxes or “smooth” 

combinations of these fluxes. 

Ideas of algorithms of the first family are applied to 

constructing of monotonisity or positivity preserving 

polynomial splines in [13, 14]. Paper [15] is devoted to the 

application of algorithms of the second family to constructing 

of global polynomial splines, reducing undesirable 

oscillations. Investigations, started in [15], are continued here. 

We use the weighted procedure for the calculation of the right 

side term of governing equations and introduce the 

compensating term to the left side of equations. 

Below classical cubic spline is represented in a form, 

convenient to next transformations, and monotonisity or 

positivity preserving spline schemes are described as 

examples of TVD algorithms applications. Next section is 

devoted to representation of weighted C
1
 cubic spline. Section 

4 is concerned with fifth degree polynomial C
2 
spline. Results 

of the weighted spline application to known test data are 

described in section 5.  
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2. Splines 

Let {(x ,u ),i =0,1,2,3,...,I} be the given set of data points 

defined over the interval [0,a], where 0 = =x <x <x <,...,< x

 = a. Conditions s(x )=u , and, at inner knots 0<i<I, s'(x

+0)=s'(x -0), s''(x +0)=s''(x -0), are used. We deal here 

with spline derivative values s’(x ) = v , 0 i I. Since the 

first derivative is a piecewise second degree polynomial, this 

function may be written in the subinterval  as 

follows 

s’(x)=v (1- ) + v  + c(1- ) , = 

=(x-x )/h , h = x - x , 

c – any constant, which may be defined after integrating of this 

formulae. If to take into account interpolation conditions s(x

)=u , s(x )=u , next expression may be received: 

s(x)=u 1−i (1-3
ξ 2

 +2
ξ 3

)+u i (3
ξ 2

-2
ξ 3

)+ 

+[v 1−i (
ξ

-2
ξ 2

+
ξ 3

)+v i (
ξ 3

-
ξ 2

)]h 2/1−i .    (1) 

This expression guaranties continuity of the spline first 

derivative. The spline second derivative may be written as 

follows 

s''(x)= (12ξ -6)(u i -u 1−i )/h
2

2/1−i
+ 

+[v 1−i (6ξ -4)+v i (6ξ -2)]/h 2/1−i . 

If to use this formulae and the similar formulae for the 

neighboring subinterval [х ,x ], the second derivative 

discontinuity jump s''(x ) may be received: 

s''(x ) =s''(x i +0)-s''(x i -0)= 

=6(u 1+i -u i )/h
2

2/1+i +6(u i -u 1−i )/h
2

2/1−i - 

-2(v 1−i +2v i )/h 2/1−i -2(2v i +v 1+i )/h 2/1+i .      (2) 

Next designations are used below 

h i =2h 2/1−i h 2/1+i /( h 2/1−i +h 2/1+i ), δ = 

= (u  -u i )/h , Z = δ / h .  (3) 

The continuity requirement for the spline second derivative 

s''(x ) =0 leads to the equation, relating three consecutive 

values of the spline first derivative v , v , v : 

v /h +4v /h +v /h = R , R = 

= R =3(δ /h +δ /h ).       (4) 

If to assume zero values of the spline second derivative at 

interval ends, next relations may be received 

2v +v =3δ , 2v  +v =3δ .      (5) 

So, a closed linearly independent system of equations for 

calculations of spline derivative values v , 0 i I, is derived 

for nonuniform knot spacing.  

Monotonisity preserving spline is constructed in [13, 14] by 

delimiting some terms in equations (4). Next 

function-delimitator is used: 

Delim(b,y)=max[-b, min(b, y)], b>0.       (6) 

Here y – an argument, which should be limited, b – a 

parameter–delimitator. Let us define the discrete function Z 

not only in points x =(x +x )/2 (see form. (3)), but also 

in points x : 

Z = Delim[|Z |, Z ].          (7) 

Next resulting equations for spline first derivative values 

were suggested in [13, 14]: 

v p /h  +2(3-p )v / h +v p /h = R , 

R =3Delim[p (|Z |+|Z |), (Z +Z )], 

p = min[1, (2|Z |)/(|Z |+ |Z |)], 

where the discrete function Z is calculated by formulas (3), (7). 

It may be shown [13, 14], that these equations produce 

monotonisity preserving spline. 

If to change definition of parameters p :  

If Z Z ≤0 then p =0 else 

p =min[1, (2|Z |)/(|Z |+ |Z |)], 

positivity preserving spline is resulted [14]. 

3. Weighted Cubic Spline 

Algorithms of constructing of weighted essentially non 

oscillating methods are very popular in Computational Fluid 

Dynamics. To apply ideas of these algorithms in the field of 

global polynomial splines we should construct formulas, 

approximating right side R =3(Z +Z ) of equation 

(4) by using stencils, which differ from the right side stencil 

(i-1,i,i+1), namely, additional stencils (i-2,i-1,i) and (i,i+1,i+2) 

are used here. In other words, the formulae for the (i-2,i-1,i) 

stencil should deal with u , u , u  data values, 

consequently, this formulae should deal only with δ , δ

 divided differences. To construct necessary formulas we 

need in definition of the discrete function ∆ : 

i i
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∆ =(δ - δ )/(x -x ), i=1,…,I-1,   (8) 

x =(x + x )/2, i=0,1,…,I-1. 

Additional approximation R (for the (i-2,i-1,i) stencil) is 

written as follow  

R = R -3(x -x )(∆ - ∆ )/h .   (9) 

Next evaluation may be derived from the formulae (9)  

R ≈R -3[(x -x )h ] /h  

= R -3[(x -x )h ] /h .   (10) 

Similarly, we use for the (i,i+1,i+2) stencil 

R = R -3(x -x )(∆ - ∆ )/h ,   (11) 

R ≈R -3[(x -x )h ] /h  

=R -3[(x -x )h ] /h .    (12) 

If to summarize evaluations (10) and (12), we have  

R =W R + W R + W R = R  + W (R - R ) 

+ W (R - R )≈ R -(x -x ) k . 

k =3(W h /h +W h /h ).   (13) 

So, using of weighted formulas produces second order term, 

which may decrease accuracy of spline in the “smooth” 

intervals. If to add compensating term to left side of equation, 

we have 

v /h  +4v / h +v /h -K [(v -v )/ 

h -(v -v )/h ]=W R + W R + W R , 

where K =k κ , k is defined by form. (13), 0≤ κ ≤1 –

changeable coefficient, which is defined below. The last 

equation may be rewritten as follows:  

(1-K )v /h  +(4+2K )v /h +(1-K )v / h  

= W R + W R + W R ,        (14) 

If to take into account end conditions (5) and the definition 

(3) for parameters h i , it is easy to establish that the coefficient 

matrix of the system (5), (14) is diagonally dominant and thus 

invertible. Therefore a unique solution of this system exists. 

According to WENO ideas, parameters  κ i , W i ,W
−
i

, W

+
i

which define stencils of left and right sides of the governing 

equations (14) should be calculated with usage of 

“smoothness” checking. Namely, the coefficient κ i  is 

defined by the logical formulae 

If 

(∆ - 2∆ +∆ ) >λ∆  

then 

κ =min(1, 1/K ) else κ =1,          (15) 

where λ should be chosen in test calculations. Stencil weights 

are calculated in two steps, namely, by formulas (16)-(18) 

(first step) and (19)-(21) (second step), final weights are given 

by formulas (22). Calculations of the second step base on the 

“smoothness” checking similar to the checking dealt in the 

formulae (15).  

p =1/|∆ |, i=1,…,I-1,             (16) 

p =0, p =max(0, 1/|∆ |-b/|∆ |), i=2,…,I-1,      (17) 

p =max(0,1/|∆ |-b/|∆ |), i=2,…,I-2, p =0,      (18) 

w =p ,                  (19) 

if (∆ -∆ ) <λ∆  or i=1 

or ((∆ -∆ )/h ) >((∆ -∆ )/h )  

then  

w =0 else w =p ,                   (20) 

if (∆ -∆ ) <λ∆  or i=I-1 

or ((∆ -∆ )/h ) <((∆ -∆ )/h )  

then 

w =0 else w =p ,              (21) 

W =w /d , W =w /d , W =w /d ,       (22) 

where d =w +w +w . 

Formulas (15)-(22) contain empirical parameters λ,b, which 

are chosen in test calculations: λ=0.3, b=1.5. It is important to 

note, that according to formulas (17)-(18) coefficients p , p  

are zero, if |∆ |>|∆ |/b, |∆ |>|∆ |/b. These conditions are 

fulfilled for smooth interpolated functions and sufficiently large 

numbers of knots. Since weights W , W  may be only less 
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−
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then coefficients p , p  (see f. (20)-(21)), additional stencils 

are excluded as the knot number increases. So, developed here 

spline transforms to classical cubic spline for smooth 

interpolated functions and sufficiently large numbers of knots. 

4. Fifth Degree Polynomial С
2 
Spline

 

Since the equation (4), which is equivalent to the continuity 

condition for the spline second derivative, is not satisfied for 

splines developed above, we have С¹ interpolation. To increase 

the spline smoothness and to provide continuity of the spline 

second derivative, a technique written in [14] is used here, 

namely, the fifth degree term is added to the cubic polynomial. 

Let next formulae is used instead of the formulae (1): 

S (x)=s(x)+  (1- ) [ q - q  (1- )]r , (23) 

where s(x) is spline (14)-(22). This expression contains two 

families of parameters q , 0 i I, and r , 0<i I. 

Parameters q are chosen to provide continuity of the spline 

second derivative, parameters r are chosen to minimize 

undesirable oscillations. The formulae (23) leads to the 

expression 

S''(x -0)=s''(x -0)+2q r /h . 

Similarly, if to consider the subinterval [x , x ], next 

expression may be derived 

S''(x +0)=s''(x +0)- 2 q r /h . 

If to subtract the previous relation from the last one, the 

second derivative continuity condition  

S''(x +0)-S''(x -0)=0 

leads to the formulae 

q =0.5 s''(x ) /( r /h + r /h ), 

where s''(x ) is given by the expression (2). This formulae 

may be dealt only at inner knots, 0<i<I. Zero values of 

parameters q are used at end knots i=0 and i=I. Trial 

calculations show, that the choice  

r =|Z |h =|u -u | 

prevents producing of undesirable oscillations. This choice 

leads to formulas 

q =0.5 s''(x ) / (|Z |+|Z |), 0<i<I, 

q =0, q =0. 

So, we have received spline, which has the С² smoothness 

similarly to classical cubic spline. But recent spline decrease 

undesirable oscillations.  

5. Results and Discussion 

To study accuracy of suggested here weighted fifth degree 

С² spline the polynomial function is interpolated 

u(x)=x³(10-15x+6x²), 0≤x≤1, u’≥0, u’(0)=u’(1)=0,  (24) 

u’’(0)=u’’(1)=0. 

Uniform knot spacing is used. Table 1 contains errors 

δ=max (|u(x)-S(x)|) of classical and weighted splines for 

various knot numbers I 

Table 1. Interpolation errors for polynomial (24). 

 Classical spline Weighted spline 

I=4 8.35e-3 3.90e-2. 

I=8 5.45e-4 5.18e-4 

I=16 3.50e-5 3.50e-5 

I=32 2.22e-6 2.22e-6 

I=64 1.40e-6 1.40e-6 

It may be seen that accuracy of suggested here weighted 

spline is approaching to accuracy of classical cubic spline for 

large knot numbers.  

To show undesirable oscillations decreasing we consider 

data with break points. Figs. 1a, 1b show classical and fifth 

degree weighted splines applied to step function data: 

u(0.0)=0.0. u(1.0)=0.0, u(2.0)=0.0, u(4.0)=1.0. u(5.0)=1.0, 

u(6.0)=1.0. These data contain two neighboring break points x

=2 and x =4. 

 

Fig. 1a. Classical cubic spline, step function interpolation.  

 

Fig. 1b. Weighted fifth degree spline, step function interpolation.  
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It may be seen, that weighted spline is significantly better 

then the classical cubic spline. More complicated cases are 

considered below. Interpolants to data [8], reported in table 2, 

are presented in figs. 2a, 2b.  

Table 2. Data [8]. 

X  U  

0. 10. 

2. 10. 

3. 10. 

5. 10. 

6. 10. 

8. 10. 

9. 10.5 

11. 15. 

12. 56. 

14. 60. 

15. 85. 

 

Fig. 2a. Classical cubic spline, data [8]. 

 

Fig. 2b. Weighted fifth degree spline, data [8]. 

Data [8] contain three consecutive break points, placed at 

right side of figs. 2a, 2b. In this case ‘smooth’ stencils are 

absent for some break points and weighted spline does not 

look quit well. But this spline is better, then classical cubic 

spline, to our opinion.  

To study the weighted spline application to data without 

single direction of increasing or decreasing the composite 

function u=y (x), 0 x 1, defined by formulas (25)-(27), is 

considered. This function includes triangular, rectangular and 

parabolic regions (see fig.3). 

y =min[(x-0.1)/0.1, (0.3-x)/0.1], 0.1 x 0.3,   (25) 

y = 1, 0.4 x 0.6,             (26) 

y =[1-(x-0.8) /0.01] , 0.7 x 9.     (27) 

 

Fig. 3. The composite function. 

Figs. 4a, 4b show classical spline and weighted fifth degree 

spline applied to the composite function. Weighted spline 

looks more pleasant. 

 

Fig. 4a. Classical cubic spline, the composite function (see fig. 3). 

 

Fig. 4b. Weighted fifth degree spline, the composite function. 

Radio chemical data (see table 3) include the little scale 

region near the start of coordinate system, shown in additional 

fragments of figs. 5a, 5b.  

i i
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Table 3. Radio chemical data. 

X  u  

7.99 0. 

8.09 2.76429e-5 

8.19 4.37498e-2 

8.7 0.169183 

9.2 0.469428 

10. 0.943740 

12. 0.998636 

15. 0.999916 

20. 0.999994 

 

Fig. 5a. Classical spline, radio chemical data. 

 

Fig. 5b. Weighted fifth degree spline, radio chemical data. 

Classical and weighted splines are similar in the little scale 

region near the start of coordinate system, weighted fifth 

degree spline looks more pleasant outside this region. 

6. Conclusion 

We consider weighted fifth degree spline, which reduces 

undesirable oscillations for data with break points. This 

property is achieved by usage of ideas applied in the field of 

high order WENO methods for numerical solving 

compressible flow equations. Numerical investigation shows 

that accuracy of recent spline approaches to accuracy of 

classical cubic spline for smooth interpolated functions and 

for sufficiently large knot numbers. Developed here weighted 

spline provides significant decreasing of oscillations, if data 

do not contain three or more consecutive break knots. If data 

contain consecutive three or more break knots, this spline is 

better, then classical cubic spline, at any rate.  
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