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Abstract: Dubins has proved in 1957 that the minimum length path between an initial and a terminal configuration can be 

found among the six paths {LSL, RSR, LSR, RSL, RLR, LRL}. Skel and Lumelsky have studied the length of Dubins path 

with the initial configuration (0, 0; α) and the terminal configuration (d, 0; β) and the minimal turning radius ρ=1 in 2001. We 

extended the Skel and Lumelsky’s results to the case that the initial and terminal configuration is
0 0
( , ; )x y α ,

1 1
( , ; )x y β , 

respectively (where
0 0 1 1
, , ,x y x y ∈ R ), and the minimal turning radius is 0ρ > . 
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1. Introduction 

The problem of finding the shortest smooth path between 

two configurations in the plane appear in various applications, 

such as when joining pieces of railways
 [1]

 or planning two 

and three-dimensional pipe networks. In robotics, this 

problem plays a central role in most of the work on 

nonholonomic motion planning
 [2-4]

. In unmanned aerial 

vehicle (UAV), the kinematics of the UAV can be 

approximated by the Dubins vehicle, too
[5]

. The Dubins 

distance in the path planning for UAV is needed to be 

computed
[5-7]

. Let the initial and terminal configurations is 

0 0
( , ; )x y α and

1 1
( , ; )x y β , respectively, where 

0 0
( , )x y and 

1 1
( , )x y is the position, α and β is the orientation angle 

(heading). The task is to find the shortest smooth path from 

0 0
( , ; )x y α to 

1 1
( , ; )x y β such that the path curvature is limited 

by 1/ ρ , where ρ  is the minimal turning radius. 

The problem of finding the shortest smooth path between 

two configurations in the plane was firstly considered by 

Dubins
[8]

. The classical 1957 result by Dubins
 

gives a 

sufficient set of paths (Dubins path) which always contains 

the shortest path. The Dubins set D includes six admissible 

paths and 

{ , , , , , }D LSL RSR LSR RSL RLR LRL= , 

where L and R are arc of the minimal allowed radius ρ

turning left or turning right, respectively, S is a line 

segment. 

Shkel and Lumelsky have considered the length of the six 

Dubins path in 2001
[9]

 with the initial configuration (0, 0; )α , 

the terminal configuration( , 0; )d β and the minimal turning 

radius 1ρ = . Also they studied the logical classification 

scheme which allows one to extract the shortest path from the 

Dubins set directly, without explicitly calculating the 

candidate paths for ‘long path case’ and ‘short path case’. 

In this paper, we studied the length of Dubins path with 

initial configuration 
0 0
( , ; )x y α and terminal configuration

1 1
( , ; )x y β , and the minimal turning radius 0ρ > . Although 

we can convert this situation into [9] by coordinate 

transformation. It is still worthy of study. For example, in 

order to find out the optimal tour of DTSP (Dubins Traveling 

Salesman Problem, which has been attracted a lot of attention
 

[5,10-16] 
for it is a useful abstractions for the study of problems 

related to motion planning and task assignment for 

uninhabited vehicles. ), we need to do n different coordinate 

transformations and this will waste computing time. 

We propose a formula for calculate the length of Dubins 

path between any initial configuration 
0 0
( , ; )x y α and terminal 

configuration 
1 1
( , ; )x y β , and any minimal turning radius 

1ρ =  in section 2. In section 3, we expend the results in 

section 2 to the case with 0ρ > . An application in DTSP is 

provided in section 4. 
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2. The Length of Dubins Path with � = � 

Let 
0 0
( , ; )x y α  be the initial configuration and 

1 1
( , ; )x y β  

be the terminal configuration. 

Three corresponding operators, L
ν

(for left turn), R
ν

(for 

right turn), S
ν

(for straight), are needed, which transform an 

arbitrary configuration ( , ; )x y ϕ  into its corresponding 

image configuration,  

( , ; ) ( sin( ) sin ,

cos( ) cos ; ),

L x y x yν ϕ ρ ϕ θ ρ ϕ

ρ ϕ θ ρ ϕ ϕ θ

= + + −

− + + +  

( , ; ) ( sin( ) sin ,

cos( ) cos ; ),

R x y x yν ϕ ρ ϕ θ ρ ϕ

ρ ϕ θ ρ ϕ ϕ θ

= − − +

+ − − −
   (1) 

( , ; ) ( cos , sin ; ),S x y x y
ν

ϕ ν ϕ ν ϕ ϕ= + +  

where index θ  indicates that the motion has turned angle 

θ (in rad) along the arc with the minimal radius ρ (the 

length of the arc is ρθ ) and ν indicates the length along the 

line segment. With these elementary transformations, any 

path in the Dubins set 

{ , , , , , }D LSL RSR LSR RSL RLR LRL= , 

can be expressed in terms of the corresponding equations. 

For example, a path made of segments , ,L S R , of the length 

, ,t p q , respectively, which starts at configuration 
0 0
( , ; )x y α , 

must end at 
0 0 1 1

( ( ( , ; ))) ( , ; )
q p t
R S L x y x yα β= . The length of 

the Dubins path is calculated as 

l t p q= + + . 

So, the value of , ,t p q is the key problem. To get the value 

of , ,t p q , we will now consider elements of Dubins set 

one-by-one and derive the operator equations for the length 

of each path. 

Let
2 2

1 0 1 0
( ) ( )d x x y y= − + − be the Euclidean distance 

between 
0 0
( , )x y and

1 1
( , )x y in the plane. Let ρ be the 

minimal radius. Firstly, let 1ρ = and 1ρ ≠  will be 

discussed later in Theorem 1. 

1. 
0 0 1 1

( ( ( , ; ))) ( , ; )
q p t
L S L x y x yα β= . By applying the 

corresponding operators (1), we have the following 

equations: 

0 1

0 1

sin( ) sin cos( ) sin( ) sin( ) ,

cos( ) cos sin( ) cos( ) cos( ) ,

(mod 2 ).

x t p t t q t x

y t p t t q t y

t q

α α α α α

α α α α α

α β π

 + + − + + + + + − + = − + + + + − + + + + =
 + + =

 

The solutions of this system with respect to the segments ,t p and q is found as 

,

( )(mod2 ),

( )(mod 2 ),

p d

t A

q A

α π

β π

 = = −
 = −

ɶ

                                      (2) 

where 
1 0

1 0

, sin sin 0,

, sin sin 0,

x x
A

x x

θ α β

θ π α β

 − + − >= 
 + − + − <

 1 0

1 0

cos cos
arctan

sin sin

y y

x x

α β
θ

α β

 − − +  =   − + − 
 and 

2

1 0 1 0
2 2 cos( ) 2( )(sin sin ) 2( )( cos cos ).d d x x y yα β α β α β= + − − + − − + − − +ɶ  

The length of LSL as a function of the boundary conditions can be now written as 
LSL
l t p q= + + , where , ,t p q are 

calculated by (2). 

2. 
0 0 1 1

( ( ( , ; ))) ( , ; )
q p t
R S R x y x yα β= . By applying the corresponding operators (1), we have the following equations: 

0 1

0 1

sin( ) sin cos( ) sin( ) sin( ) ,

cos( ) cos sin( ) cos( ) cos( ) ,

(mod 2 ).

x t p t t q t x

y t p t t q t y

t q

α α α α α

α α α α α

α β π

 − − + + − − − − + − = + − − + − + − − − − =
 − − =

 

The solutions of this system with respect to the segments ,t p and q is found as 

,

( )(mod2 ),

( )(mod 2 ),

p d

t A

q A

α π

β π

 = = −
 = −

ɶ

                                   (3) 

where
1 0 1 0

1 0 1 0

, sin sin 0, cos cos
arctan

, sin sin 0, sin sin

x x y y
A

x x x x

θ α β α β
θ

θ π α β α β

   − − + > − + −  = =   + − − + <  − − + 

 and 

2

1 0 1 0
2 2 cos( ) 2( )( sin sin ) 2( )(cos cos ).d d x x y yα β α β α β= + − − + − − + + − −ɶ  
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The length of RSR as a function of the boundary conditions can be now written as 
RSR
l t p q= + + , where , ,t p q are 

calculated by (3). 

3. 
0 0 1 1

( ( ( , ; ))) ( , ; )
q p t
R S L x y x yα β= . By applying the corresponding operators (1), we have the following equations: 

0 1

0 1

sin( ) sin cos( ) sin( ) sin( ) ,

cos( ) cos sin( ) cos( ) cos( ) ,

(mod 2 ).

x t p t t q t x

y t p t t q t y

t q

α α α α α

α α α α α

α β π

 + + − + + − + − + + = − + + + + + + − − + =
 + − =

 

The solutions of this system with respect to the segments ,t p and q is found as 

,

( )(mod2 ),

( )(mod 2 ),

p d

t A B

q A B

α π

β π

 = = − −
 = − −

ɶ

                                    (4) 

Where
1 0 1 0

1 0 1 0

, cos cos 0, sin sin
arctan

, cos cos 0, cos cos

y y x x
A

y y y y

θ π α β α β
θ

θ α β α β

   + − − − > − + +  = = −   − − − <  − − − 

, arctan
2

d
B =

ɶ

,  and 

2

1 0 1 0
2 2cos( ) 2( )(sin sin ) 2( )(cos cos ).d d x x y yα β α β α β= − + − + − + − − +ɶ  

The length of LSR as a function of the boundary conditions can be now written as 
LSR
l t p q= + + , where , ,t p q are 

calculated by (4). 

4. 
0 0 1 1

( ( ( , ; ))) ( , ; )
q p t
L S R x y x yα β= . By applying the corresponding operators (1), we have the following equations: 

0 1

0 1

sin( ) sin cos( ) sin( ) sin( ) ,

cos( ) cos sin( ) cos( ) cos( ) ,

(mod 2 ).

x t p t t q t x

y t p t t q t y

t q

α α α α α

α α α α α

α β π

 − − + + − + − + − − = + − − + − − − + + − =
 − + =

 

The solutions of this system with respect to the segments ,t p and q is found as 

,

( )(mod2 ),

( )(mod 2 ),

p d

t B A

q B A

α π

β π

 = = − +
 = − +

ɶ

                                    (5) 

where
1 0 1 0

1 0 1 0

, cos cos 0, sin sin
arctan

, cos cos 0, cos cos

y y x x
A

y y y y

θ α β α β
θ

θ π α β α β

   − + + > − − −  = =   + − + + <  − + + 

, arctan
2

d
B =

ɶ

,  and 

2

1 0 1 0
2 2cos( ) 2( )(sin sin ) 2( )(cos cos ).d d x x y yα β α β α β= − + − − − + + − +ɶ  

The length of RSL as a function of the boundary conditions can be now written as 
RSL
l t p q= + + , where , ,t p q are 

calculated by (5). 

5. 
0 0 1 1

( ( ( , ; ))) ( , ; )
q p t
R L R x y x yα β= . By applying the corresponding operators (1), we have the following equations: 

0 1

0 1

sin( ) sin cos( ) sin( ) sin( ) sin( ) ,

cos( ) cos cos( ) cos( ) cos( ) cos( ) ,

(mod 2 ).

x t t p t t p q t p x

y t t p t t p q t p y

t p q

α α α α α α

α α α α α α

α β π

 − − + + − + − − − − + − + − + = + − − − − + + − + − + − − − + =
 − + − =

 The solutions of this 

system with respect to the segments ,t p and q is found as the minimum of the following two cases. Let 

( )2

1 0 1 0

1
6 2 cos( ) 2( )(sin sin ) 2( )(cos cos )

8
d d x x y yα β α β α β= − + − + − − − − −ɶ  

and 

1 0 1 0

1 0 1 0

, sin sin 0, cos cos
arctan

, sin sin 0. sin sin

x x y y
A

x x x x

θ α β α β
θ

θ π α β α β

   − − + > − + −  = =   + − − + <  − − + 

, 

Case 1. 
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1

1
1

1
1

arccos ,

( )(mod2 ),
2

( )(mod 2 ).
2

p d

p
t A

p
q A

α π

β π

 = = − +
 = + −

ɶ

                              (6) 

Case2. 

2

2
2

2
2

2 arccos ,

( )(mod2 ),
2

( )(mod 2 ).
2

p d

p
t A

p
q A

π

α π

β π

 = − = − +
 = + −

ɶ

                              (7) 

The length of RLR as a function of the boundary conditions can be now written as 
1 1 1 2 2 2

min{ , }
RLR
l t p q t p q= + + + + , 

where 
1 1 1
, ,t p q are calculated by (6) and 

2 2 2
, ,t p q are calculated by (7). 

It is worth to noting that both of the two cases are needed to be considered (but [9] only considered the case 1). For example, 

let(2.6,1.2;3.6)be the initial configuration and (2.7,2.3;4.0) be the terminal configuration, then 
1 1 1

6.7738t p q+ + = and 

2 2 2
11.2758t p q+ + = , so 

1 1 1RLR
l t p q= + + . See Fig. 1(a). On the other hand, let(2.6,1.2;0.3)be the initial configuration 

and (2.7,2.3;4.0) be still the terminal configuration, then 
1 1 1

12.0693t p q+ + = and 
2 2 2

5.6634t p q+ + = , so 

2 2 2RLR
l t p q= + + . See Fig. 1(b). 

 

(a)                                                        (b) 

Figure 1. Two cases for Dubins pathRLR . 

6. 
0 0 1 1

( ( ( , ; ))) ( , ; )
q p t
L R L x y x yα β= . By applying the corresponding operators (1), we have the following equations: 

0 1

0 1

sin( ) sin cos( ) sin( ) sin( ) sin( ) ,

cos( ) cos cos( ) cos( ) cos( ) cos( ) ,

(mod 2 ).

x t t p t t p q t p x

y t t p t t p q t p y

t p q

α α α α α α

α α α α α α

α β π

 + + − − + − + + + + − + − + − = − − + + + − − + − + − + + + − =
 + − + =

 

The solutions of this system with respect to the segments ,t p and q is found as the minimum of the following two cases. 

Let 

2

1 0 1 0

1
(6 2 cos( ) 2( )(sin sin ) 2( )(cos cos )
8

d d x x y yα β α β α β= − + − − − − + − −ɶ  

and 

0 1 2 3 4 5
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1 0 1 0

1 0 1 0

, sin sin 0, cos cos
arctan

, sin sin 0. sin sin

x x y y
A

x x x x

θ α β α β
θ

θ π α β α β

   − + − > − − +  = =   + − + − <  − + − 

. 

Case 1. 

1

1

1

1

1

arccos ,

( )(mod2 ),
2

( )(mod 2 ).
2

p d

p
t A

p
q A

α π

β π

 = = + −
 = − +

ɶ

                                 (8) 

Case2. 

2

2

2

2

2

2 arccos ,

( )(mod2 ),
2

( )(mod 2 ).
2

p d

p
t A

p
q A

π

α π

β π

 = − = + −
 = − +

ɶ

                                 (9) 

The length of LRL as a function of the boundary conditions can be now written as 
1 1 1 2 2 2

min{ , }
LRL
l t p q t p q= + + + + , 

where
1 1 1
, ,t p q are calculated by (8) and 

2 2 2
, ,t p q are calculated by (9). 

3. The Length of Dubins Path with 0ρ >  

Now, we consider the case for 0ρ > . 

Theorem 1 Let 
0 0
( , ; )x y α  and 

1 1
( , ; )x y β be the initial configuration and the terminal configuration, respectively. Let 1ρ ≠  

and the length of Dubins path is denoted by 
1

l
ρ≠

. Let l  denote the length of the corresponding Dubins path of the minimum 

turn radius ρɶwith initial configuration 
0 0
( , ; )x y αɶ ɶ and the terminal configuration 

1 1
( , ; )x y βɶ ɶ , where 1ρ =ɶ , 0

0
,

x
x

ρ
=ɶ 1

1
,

x
x

ρ
=ɶ

0

0
,

y
y

ρ
=ɶ 1

1
,

y
y

ρ
=ɶ  then 

1
.l l

ρ
ρ

≠
= ⋅  

Proof we take Dubins pathLSR as an example to prove. Let 1ρ ≠ , then we have 

0 1

0 1

sin( ) sin cos( ) sin( ) sin( ) ,

cos( ) cos sin( ) cos( ) cos( ) ,

(mod 2 ).

t t t q t
x p x

t t t q t
y p y

t q

ρ α ρ α α ρ α ρ α
ρ ρ ρ ρ ρ

ρ α ρ α α ρ α ρ α
ρ ρ ρ ρ ρ

α β π
ρ ρ

 + + − + + − + − + + = − + + + + + + − − + =
 + − =

           (10) 

That is 

0 1

0 1

sin( ) sin cos( ) sin( ) sin( ) ,

cos( ) cos sin( ) cos( ) cos( ) ,

(mod 2 ).

x xt p t t q t

y yt p t t q t

t q

α α α α α
ρ ρ ρ ρ ρ ρ ρ ρ

α α α α α
ρ ρ ρ ρ ρ ρ ρ ρ

α β π
ρ ρ

 + + − + + − + − + + = − + + + + + + − − + =
 + − =

             (11) 
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Let 0

0
,

x
x

ρ
=ɶ 1

1
,

x
x

ρ
=ɶ 0

0
,

y
y

ρ
=ɶ 1

1
,

y
y

ρ
=ɶ ,

t
t
ρ

=ɶ ,
p

p
ρ

=ɶ
q

q
ρ

=ɶ . Now (11) can be rewritten as 

0 1

0 1

sin( ) sin cos( ) sin( ) sin( ) ,

cos( ) cos sin( ) cos( ) cos( ) ,

(mod 2 ).

x t p t t q t x

y t p t t q t y

t q

α α α α α

α α α α α

α β π

 + + − + + − + − + + = − + + + + + + − − + =
 + − =

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ

             (12) 

Compare (12) with Dubins path LSR  when 1ρ =ɶ , we 

can get the solutions of (12) by (4). Let the length of Dubins 

path LSR  in (12) is denoted by 
( 1)LSR

l
ρ≠

 and the length in 

(4) is denoted by
( 1)LSR

l
ρ=ɶ

, then 

( 1) ( 1)
( )

LSR LSR
l t p q t p q l

ρ ρ
ρ ρ

≠ =
= + + = ⋅ + + = ⋅

ɶ

ɶ ɶ ɶ .  □ 

Theorem 1 laid a solid foundation for computing the 

length of Dubins tour of travelling salesman problem with 

any minimal turning radius 0ρ > . 

4. An Application in DTSP 

Above all, the formula to calculate , ,t p q for the length of 

Dubins path is provided which is applicable to any initial 

configuration 
0 0
( , ; )x y α , any terminal configuration 

1 1
( , ; )x y β and any minimal turning radius 0ρ > . Next, we 

consider its application in DTSP. 

 

Figure 2. An instance of DTSP. 

For the instance considered in this section, the vertices are 

generated randomly, independently and uniformly in a 5 by 5 

square (see Fig.2). The vertices are labeled as 1,2, ,10⋯ and 

their positions and headings are shown in Tab. 1. 

 

 

Table 1. Configurations of the 10 vertices instance generated randomly. 

10 Vertex Configuraton(TSP: 12.6239) 

Vertex X Y 
Heading 

( 0.1ρ = ) 

Heading 

( 0.5ρ = ) 

Heading 

( 1ρ = ) 

1 4.0579 2.6552 3.9132 5.0913 5.5396 

2 3.6489 2.7603 3.7546 0.0029 0.5892 

3 3.9223 1.1900 3.6622 3.3706 2.6511 

4 3.1338 1.8687 2.7529 2.4887 2.7337 

5 1.1574 1.8527 3.1024 3.2398 2.8227 

6 0.2346 1.9660 2.2669 2.3065 3.47468 

7 0.3445 3.5166 1.2351 1.2029 0.5435 

8 0.9754 4.4559 0.4972 0.5113 0.8874 

9 2.5774 4.4722 5.9065 5.8899 5.5635 

10 3.5949 3.5127 5.4060 5.3556 5.3026 

By using the formula in section 2 and 3, we can get the 

length of the Dubins path from ( , ; )
i i i
x y θ to

1 1 1
( , ; )
i i i
x y θ
+ + +

, 

1,2, ,10i = ⋯  (set 
11 11 11 1 1 1
( , ; ) ( , ; )x y x yθ θ= ). Denote 

i
l the 

length of Dubins path from ( , ; )
i i i
x y θ to

1 1 1
( , ; )
i i i
x y θ
+ + +

, e.g.

i i i i
l t p q= + + ( 1,2, ,10)i = ⋯ . See Tab. 2. 

Table 2. The length of Dubins path. 

radius 0.1ρ =  0.5ρ =  1ρ =  

1
l  0.4637 2.7617 5.9110 

2
l  1.6501 2.0622 4.4585 

3
l  1.0726 1.1520 1.0529 

4
l  1.9775 2.0034 2.0023 

5
l  0.9371 0.9721 0.9582 

6
l  1.5623 1.6073 5.5117 

7
l  1.1337 1.1420 1.1556 

8
l  1.6049 1.6181 1.8043 

9
l  1.3995 1.4032 1.4007 

10
l  1.0108 0.9749 0.9845 

total 12.8122 15.6968 25.2396 

The Dubins tour for the 10 vertex instance with different 

turning radius 0.1,0.5,1ρ = are presented in Fig.3. For this 

instance, the length of ETSP is 12.6239. From Fig.3, we can 

see that the Dubins length are all larger than the length of 

ETSP and it is increasing rapidly as the minimal turning 

radius ρ goes up. 
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(a)                              (b)                            (c) 

(a) Length 12.8122 with 0.1ρ = . (b) Length 15.6968 with 0.5ρ = . (c) Length 25.2369 with 1ρ = . 

Figure 3. The tour of DTSP. 

5. Summary 

In this paper, the formula to calculate , ,t p q for the length 

of Dubins path is provided which is applicable to any initial 

point 
0 0
( , ; )x y α , any final point 

1 1
( , ; )x y β and any minimal 

turning radius 0ρ > . We have proved the formula 

theoretically and experimentally with its application in DTSP. 

Numeral experiment has shown that the formulas are correct 

and efficient. 
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