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Abstract: Recently several authors defined and studied Riesz sequence space ��(u, p) of non-absolute type. In this paper for 

some weight s ≥ 0, we define the generalized Risez sequence space ��(u, p, s) of non-absolute type  and determine its Kothe-

Toeplitz dual. We also consider the matrix mapping ��(u, p, s) to �� and ��(u, p, s) to c, where �� is the space of all bounded 

sequences and c is the space of all convergent sequences. 
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1. Introduction 

Throughout the paper N, � denote the set of positive 

integers and the set of all real numbers. We also denote the 

collection of all finite subsets of N by F. Let ω  be the space 

of all sequences, real or complex; l∞ , c  and 0
c are 

respectively the space of all bounded sequences, convergent 

sequences and null sequences. Let ( )
k

p p=  be a bounded 

sequence of strictly positive real numbers with sup
k

k

p H=

and max.{1, }M H= . 

Then the sequence spaces ( )l p  and ( )l p∞  were defined 

by Maddox [7] (see also [5, 13]) as follows: 

1

( ) ( ) : | |
kp

k k

k

l p x x xω
∞

=

  = = ∈ < ∞ 
  

∑ , 

with 0
k

p H< ≤ < ∞ , 

{ }( ) ( ) : sup | |k k
k

l p x x xω∞ = = ∈ < ∞ . 

which are complete spaces paranormed by 
1/

1

1

( ) | |
k

M
p

k

k

g x x
∞

=

 
=   
 
∑ and 

/

2
( ) sup | | kp M

k
k

g x x=  if and only if 

inf 0
k

p > . 

We shall assume throughout that 
1 1

1k kp t
− −+ =  provided 

1 inf kp H< ≤ < ∞ . 

In [15] Stieglitz and Tietz defined 

1

:
n

i

i

cs x x c
=

  = ∈  
  
∑  

0 0

1

:
n

i

i

c s x x c
=

  = ∈  
  
∑  

1

:
n

i

i

bs x x l∞
=

  = ∈  
  
∑ . 

Let ( )kq q=  be a sequence of positive real numbers and 

let us write 

1

n

n k

k

Q q
=

=∑  

for n∈  N . Then the matrix ( )q q

nkR r=  of the Riesz mean 

( ), nR q  is given by 

( )
0

0 .

k

q
nnk

q
if k n

Qr

if k n

 ≤ ≤= 
 >

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The Riesz mean (R, n
q )  is regular if and only if n

Q → ∞  

as n → ∞  see (Peterson [4, p.10], [11], [12], [14], [17], [18]). 

In a recent paper Sheikh and Ganie [16] defined and 

studied the Riesz sequence space ( , )qr u p of non-absolute 

type by 

( )
1 1

1
( , ) :

kp
n

q

k k k k

n kn

r u p x x u q x
Q

ω
∞

= =

  = = ∈ < ∞ 
  

∑ ∑ , 

where 

0 kp H< ≤ < ∞ . 

The main purpose of this paper is to define the generalized 

Riesz sequence space ( , , )
qr u p s .We determine the Kothe-

Toeplitz dual of ( , , )
qr u p s  and then consider the matrix 

mapping ( , , )
qr u p s  to l∞  and ( , , )

qr u p s  to c. 

In [2] Bulut and Cakar defined and studied the sequence 

space ( , )l p s  and in [3] Khan and Khan defined and 

investigated the Cesaro sequence space ces(p,s). In the same 

vein we define the generalized Riesz sequence space 

( , , )
qr u p s in the following way. 

Definition. For 0s ≥  we define 

( )
1

1 1

1
( , , ) :

kp
n

q

k k k ks
k kn

r u p s x x u q x
Q

ω
∞

+
= =

  = = ∈ < ∞ 
  

∑ ∑ . 

If s = 0 then ( , , )
qr u p s  reduces to ( , )

qr u p ,which is 

defined and studied in [16]. 

Define the sequence ( )ky y=  by 

1
1

1 k

k j j js
jk

y u q x
Q +

=

= ∑                              (1) 

Let X and Y be two subsets of ω . Let ( )
nk

A a=  be an 

infinite matrix of real or complex numbers nk
a , where ,n k ∈

N. Then the matrix A defines the A- transformation from X 

into Y, if for every sequence ( )
k

x x X= ∈ , the sequence 

( )( )n
Ax Ax= , the A-transform of x exists and is in Y, where 

( )
n nk k

k

Ax a x=∑  

For simplicity in notation, here and what follows, the 

summation without limits runs from 0 to ∞ . By ( , )X Y , we 

denote the class of all such matrices. A sequence x is to be A-

summable to l  if Ax converges to l , which is called as the 

A-limit of x. 

We mention the following inequality (see[6,9]) which will 

be used later. For any integer 1E >  and any two complex 

numbers a and b have 

|a b| (| | | | )
t t p

E a E b
−≤ +                    (2) 

Where 1P >  and
1 1

1p t
− −+ = . 

Theorem 1.1. ( , , )
q

r u p s  is a complete linear metric space 

paranormed by g defined by 

1/

1
1 1

1
( )

k
M

p
n

k k ks
n kn

g x u q x
Q

∞

+
= =

 
 =
 
 
∑ ∑                  (3) 

With 0 kp H< ≤ < ∞ and sup , max{1, }k
k

H p M H= = . 

Proof. The linearity of ( , , )
q

r u p s  with respect to the co-

ordinate wise addition and scalar multiplication follows from 

the inequalities which are satisfied for , ( , , )
q

x y r u p s∈  (see 

[6, p.30]) 

1/

1
1 1

1
(

k
M

p
n

k k k ks
n kn

u q x y
Q

∞

+
= =

 
 +
 
 
∑ ∑  

1/

1
1 1

1
k

M
p

n

k k ks
n kn

u q x
Q

∞

+
= =

 
 ≤ +
 
 
∑ ∑

1/

1
1 1

1
k

M
p

n

k k ks
n kn

u q y
Q

∞

+
= =

 
 
 
 
∑ ∑  (4) 

and for any α ∈� (see [8]) 

| | max{1,| | }kp Mα α≤                           (5) 

It is clear that ( ) 0g θ = , where (0, 0, 0,.........)θ = and 

( ) ( )g x g x= −  for all ( , , )
q

x r u p s∈ . The inequality (4) and 

(5) together gives the subadditivity of g and 

( ) max{1,| |} ( )g x g xα α≤ . 

Consider any sequence ( )ix  of points of ( , , )
q

r u p s  such 

that ( ) 0ig x x− →  and a sequence ( )iα  of scalars such that 

iα α→ . Then ( )( )ig x  is bounded, since by subadditivity 

the inequality 

( ) ( )( )i ig x g x g x x≤ + −  

holds. Thus we have, 

( ) ( )
1/

1
1 1

1
k

M
p

n
i i

i k k i k ks
n kn

g x x u q x x
Q

α α α α
∞

+
= =

 
 − = −
  
∑ ∑  

( ) ( ) 0
i i

i g x g x xα α α≤ − + − →  as n → ∞ . 

Thus the scalar multiplication is continuous. Hence g is a 

paranorm on the space ( , , )
q

r u p s . 

It is quite routine to show that ( , , )
q

r u p s  is a metric space 

with the metric ( , )d x y =  ( )g x y−  provided that 

, ( , , )
q

x y r u p s∈ , where g is defined by (3); and using a 

similar method to that in [9] one can show that ( , , )
q

r u p s  is 

complete under the metric mentioned above . 
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2. Kothe-Toeplitz Duals 

If X is a sequence space we define [13] 

( ) : | | ,k k k

k

X a a a x for every x Xα  = = < ∞ ∈ 
 

∑  

( ) : ,k k k

k

X a a a x is convergent for every x X
β  = = ∈ 

 
∑

 

X α , X β  and X γ  are called the α - (or Kothe-Toeplitz), 

β - (or generalized Kothe-Toeplitz) and γ - dual spaces of X, 

respectively. Note that X X Xα β γ⊂ ⊂ . 

In this section we shall obtain the α - , β - and γ - dual of 

( , , )qr u p s . For our purpose we need the following lemma. 

Lemma 2.1 ([10, Theorem 5.10 ]). (i) Let 1 k
p H< ≤ < ∞  

for every k ∈ N. Then 1
( ( ), )A l p l∈  if and only if there exists 

an integer 1E >  such that 

1

1

sup

kt

nk
N F k n N

a E
∞

−

∈ = ∈

< ∞∑ ∑ . 

(ii) Let 0 1kp< ≤  for every k ∈ N. Then 1( ( ), )A l p l∈  if 

and only if 

1supsup

kp

nk
F k

n N

a E−

Ν∈
∈

< ∞∑ . 

Lemma 2.2 ([1, Theorem 6]). (i) Let 1 kp H< ≤ < ∞  for 

every k ∈ N. Then ( ( ), )A l p l∞∈  if and only if there exists an 

integer 1E >  such that 

1sup

kt

nk
n n N

a E−

∈
< ∞∑                              (6) 

(ii) Let 0 1kp< ≤  for every k ∈ N. Then ( ( ), )A l p l∞∈  if 

and only if 

,

sup kp

nk
n k

a < ∞                                   . (7) 

Lemma 2.3 ([1, Theorem 1]). Let 0 kp H< ≤ < ∞  for 

every k ∈ N. Then ( ( ), )A l p c∈  if and only if (6) and (7) 

hold and lim nk k
n

a β=  for k ∈ N also holds. 

Theorem 2.1. Let 1 kp H< ≤ < ∞ for every k ∈ N. Define 

the sets 1( , , )D u p s  and 2 ( , , )D u p s  as follows: 

1 1

1
1

( , , ) ( ) : sup ( 1)

kt

n k sn

k k
E n F k n N n n

a
D u p s a a Q E

u q
ω − + −

> ∈ ∈

  = = ∈ − < ∞ 
  

∑ ∑U  

and 

1 1 1 1

2
1

( , , ) ( ) : .

k k
t t

s sk k
k k k

E k k k k k

a a
D u p s a a Q E and Q E l

u q u q
ω + − + −

∞
>


        = = ∈ ∆ < ∞ ∈    

      


∑U  

Then 

1 2( , , ) ( , , ), ( , , ) ( , , ) ( , , ).q q qr u p s D u p s and r u p s r u p s D u p s
α β γ

     = = =
     

 

Proof. Let ( )ka a ω= ∈ . Then by (1) one can easily derive 

that 

.

1

1

( 1)

n kn
sn

n n k k

k n n n

a
a x Q y

u q

−
+

= −

= −∑
1

nk k

k

b y
∞

=

=∑         (8) 

where ,n k ∈N and 

1( 1) , 1

0, 0 1

n k sn
k

n n
nk

a
Q if n k n

u q
b

if k n or k n

− + − − ≤ ≤= 
 ≤ < − >

 

Let ( )nkB b= . Then by combining (8) with (i) of Lemma 

2.1 we see that 1( )n nax a x l= ∈  whenever 

( ) ( , , )q

nx x r u p s= ∈  if and only if 1By l∈  wheneve ( )y l p∈ . 

This shows that. 
1( , , ) ( , , )qr u p s D u p s

α
  =
 

 

Again, by Abel’s transformation, we have 

1
1 1

1 1

n n
s sk n

k k k k n n

k k k k n n

a a
a x Q y Q y

u q u q

−
+ +

= =

 
= ∆ + 

 
∑ ∑  

=
1

nk k

k

c y
∞

=
∑ , for k ∈  N                               (9) 

where ( )nkC c=  is define as 
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1

1

, 1 1

,

0,

sk

k

k k

sn

nk n

n n

a
Q if k n

u q

a
c Q if k n

u q

if k n

+

+

  
∆ ≤ ≤ −  
 

= =

 >


 

where ,n k ∈ N. Thus from Lemma 2.3 with (9) we have 

( )
n n

ax a x cs= ∈  whenever ( ) ( , , )q

nx x r u p s= ∈  if and only 

if Cy c∈  whenever ( )y l p∈ . Hence from (6) we derive that 

1 1 1 1

1

sup

k k
t t

s sk k
k k

k Nk k k k k

a a
Q E and Q E

u q u q

∞
+ − + −

∈=

 
∆ < ∞ < ∞ 
 

∑   (10) 

which shows that 
2( , , ) ( , , )qr u p s D u p s

β
  =  . 

Also, from Lemma 2.2 together with (9) we have 

( )k kax a x bs= ∈  whenever ( ) ( , , )q

nx x r u p s= ∈  if and only 

if Cy l∞∈  whenever ( ) ( )ky y l p= ∈ . This again gives the 

condition (10) which means that 2[ ( , , )] ( , , )qr u p s D u p sγ = . 

Theorem 2.2. Let 0 1kp< ≤  for every k ∈ N. Define 

3 ( , , )D u p s  and 4 ( , , )D u p s  as 

( ) 1 1

3 ( , , ) ( ) : supsup 1

kp

n k sn

k k
N F k n N n n

a
D u p s a a Q E

u q
ω − + −

∈ ∈

  = = ∈ − < ∞ 
  

∑  

and 

1 1

4
( , , ) ( ) : sup sup .

k k
p p

s sk k

k k k
k kk k k k

a a
D u p s a a Q and Q

u q u q
ω + +

 
  = = ∈ ∆ < ∞ < ∞  
  

 

 

Then 

3 4( , , ) ( , , ) ( , , ) ( , , ) ( , , )q q qr u p s D u p s and r u p s r u p s D u p s
α β γ     = = =    

. 

Proof. The proof is similar as that of above theorem 2.1 by 

using second parts of Lemma 2.1, 2.2, and 2.3 instead of first 

parts, and so we omit the details. 

3. Matrix Mapping on the Set ( , , )
q

r u p s  

In this section we characterize the class of matrices 

( ( , , ), )
q

r u p s l∞  and ( ( , , ), )
q

r u p s c . 

Theorem 3.1. (i) Let 1 k
p H< ≤ < ∞ for every k ∈ N. Then 

( )( ), , ,qA r u p s l∞∈  if and only if there exists an integer 

E >1 such that 

1 1
( ) sup

kt

snk

k
n k k k

a
U E Q E

u q

+ − 
= ∆ < ∞ 

 
∑               (11) 

1 1

kt

snk

k

k k

a
Q E l for

u q

+ −
∞

  
∈   

  
 n∈N             (12) 

(ii) Let 0 1
k

p< ≤  for every k ∈ N. Then 

( ( , , ), )
q

A r u p s l∞∈  if and only if 

1
sup

kp

snk

k
n k k

a
Q

u q

+ 
∆ < ∞ 
 

                 (13) 

Proof. (i). Necessity. Let ( ( , , ), )
q

A r u p s l∞∈ . Then 

( )
n nk k

k

A x a x=∑  exists for ( , , )
q

x r u p s∈  and this implies 

that ( ) ( , , )
q

nk k N
a r u p s

β

∈
 ∈    for every fixed n∈ N. So by 

theorem 2.1 the necessities of (11) and (12) hold. 

Sufficiency. Suppose the conditions (11) and (12) hold. 

For ,m n∈N, consider the equation 

1
1 1

1 1

m m
s snk nm

nk k k k m m

k k k k m m

a a
a x Q y Q y

u q u q

−
+ +

= =

 
= ∆ + 

 
∑ ∑        (14) 

When m → ∞  then from (14) we have 

1

1 1

snk

nk k k k

k k k k

a
a x Q y

u q

∞ ∞
+

= =

 
= ∆ 

 
∑ ∑                  (15) 

Using inequality (2) we have from (15) 

1sup sup snk

nk k k k
n nk k k k

a
a x Q y

u q

+ 
≤ ∆  

 
∑ ∑  

1sup

k

kk

t

ptsnk

k k
n k kk k

a
E Q E y

u q

−+
  
 ≤ ∆ + 
   
∑ ∑  

1
[ ( ) ( )]ME U E g y≤ + < ∞  . 

This shows that ( ( , , ), )
q

A r u p s l∞∈ . 

(ii) The proof of second part is similar as that of part (i) 
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and so omitted. 

Theorem 3.2. (i) Let 1 k
p H< ≤ < ∞ for every k ∈ N. Then 

( ( , , ), )qA r u p s c∈  if and only if (11), (12) and (13) hold and 

there is a sequence ( )kα  of scalars such that 

1lim 0snk k

k
n

k k

a
Q

u q

α + −
∆ = 
 

 for all k ∈ N.              (16) 

Proof. Necessity. Suppose that ( ( , , ), )qA r u p s c∈  and 1

kp H< ≤ < ∞ . Since c l∞⊂ , so by above theorem the 

necessities of (11) and (12) hold. For the necessity of 

condition (16), we take for each fixed k, a sequence 

( )( ) ( )
( )

k k

nx x q in= ( , , )qr u p s with 

( )
1

( )
1 , 1

( )

0, 0 1.

s
n k k

k
n n

n

Q
if k n k

u qx q

if n k or n k

+
−

− ≤ ≤ += 
 ≤ < > +

 

Then for each k ∈ N we have ( )kAx c∈ , which shows that 

1snk

k

k k n N

a
Q c

u q

+

∈

  
∆ ∈   
  

. This proves the necessity of the 

condition (16). 

Sufficiency. Suppose that the conditions (11), (12), (14) 

and (16) hold. Then for ( , , )q
x r u p s∈ , we have 

( ) ( , , )q

nka r u p s
β

 ∈    for each n and so nk k

k

Ax a x=∑  exists. 

For every ,m n∈N, we have 

1 1 1 1

1 1

sup

k kp p
m

s snk nk

k k
nk kk k k k

a a
Q E Q E

u q u q

∞
+ − + −

= =

   
∆ ≤ ∆   
   

∑ ∑  

Letting ,m n → ∞  together with (11) and (16) gives 

1 1

1

.

k
p

sk

k

k k k

Q E
u q

α∞
+ −

=

 
∆ < ∞ 
 

∑                  (17) 

Also by letting n → ∞  we have from (12) that  

1 1

k
p

snk

k

k k

a
Q E l

u q

+ −
∞

  
 ∈    

 

which leads together with (17) that 2
( ) ( , , )

k
D u p sα ∈ . Thus 

the series k k

k

xα∑  converges for every ( , , )
q

x r u p s∈ . 

Writing nk k
a α−  for nk

a  we have from (15). 

1
( ) ,

snk k

nk k k k k

k k k k

a
a x Q y for

u q

αα + −
− = ∆  

 
∑ ∑  n∈N.   (18) 

Comparing this with Lemma 2.3 with 0
k

β =  for all k ∈ N , 

we have the matrix 
1

,

snk k

k

k k n k N

a
Q

u q

α +

∈

  −
∆   
  

 belongs to the 

class ( )( ),l p c
o . 

Thus by (18) we have 

( )lim 0
nk k k

n
k

a xα− =∑ .                       (19) 

Now by combining (19) with the above results one can see 

that Ax c∈ . 

Thus the proof is complete. 

If 0
k

α =  for each k ∈ N , then we have the following 

corollary. 

Corollary 3.1. Let 1
k

p H< ≤ < ∞  for each k ∈ N. Then

( )( , , , )qA r u p s c∈
o  if and only if the conditions (11), (12) 

and (13) hold, and (16) also holds with 0kα =  for each k ∈  

N. 
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