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1. Introduction 

The problems of automatic continuity are the subject of a 

very broad theory, which uses both analytical techniques and 

the algebraic results. First specify what constitutes a problem 

of automatic continuity. Let A and B be two Banach algebras 

(or two topological algebras in general) and T is a linear map 

from A to B; in the study of the problem of automatic 

continuity of T, it is determined algebraic conditions A and/or 

B, for which T is automatically continuous. These conditions 

can include application T. This is the case for example in the 

study of derivations of a Banach algebra. 

In this paper, we address the problem of automatic 

continuity of derivation and Homomorphisms in some 

Banach algebras. We mainly interested in two questions: 

Q1) Is any derivation in a semi-prime Banach algebra is 

continuous?  

Q2) Is any epimorphism of a Banach algebra over a semi-

prime Banach algebra is continuous? 

These two questions are still open even the cases of 

commutative Banach algebras. However, it is well known 

that any derivation of a semi-simple Banach algebra is 

continuous [8] and every epimorphism of a Banach algebra 

over a semi simple Banach algebra is continuous [7]. 

Questions (Q1) and (Q2) are asked by J. Cusack in [2]. He 

showed that if the answer to (Q1) or (Q2) is negative, then 

there exists a radical simple topologically Banach algebra 

non trivial. 

Questions (Q1) and (Q2) are respectively equivalent to the 

following questions: 

1) Is the ideal separting of a derivation of a Banach algebra 

is nilpotent? 

2) Is the ideal separting an epimorphism of a Banach 

algebra over a Banach algebra is nilpotent? 

Note that the equivalence concerning stubs ((Q1) ⇔  1)) 

is given in [9]. That concerning epimorphism ((Q2) ⇔  1)) 

is proved in [2].  

Formulated in the commutative case (Q1) and (Q2) 

become: 

(Q'1) Is all derivation in a commutative Banach algebra 

and semi-prime is continuous? 

(Q'2) Is any epimorphism of a Banach algebra over a 

commutative Banach algebra and semi-prime is continuous? 

Questions (Q'1) and (Q'1) were studied by several authors. 

In particular, RV Garmilla that is interested in (Q'1) (see [3], 

[4], [5]) and V. Runde has given in [10] some results on these 

two issues. 

For his part, J. Cusack in [2] has shown that the following 

are equivalent: 

i) The separting space an epimorphism of a Banach algebra 

over a Banach algebra is nilpotent.  

ii) any epimorphism of a Banach algebra over a semi-

prime Banach algebra is continuous.  

iii) Any epimorphism of a Banach algebra over a prime 

Banach algebra is continuous.  

For derivations, we also have, according to [9], the 

equivalence of the following assertions:  

i) The separting ideal in a derivation of a Banach algebra is 

nilpotent.  

ii) Any derivation of a semi-prime Banach algebra is 

continuous.  

iii) Any derivation of a prime Banach algebra is 
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continuous. 

This allows to study questions (Q1) and (Q2) for the 

Banach prime algebras. In the commutative case, the study is 

reduced to the integrity algebras. 

On the other hand, RV Garmilla shown in [4] the following 

result in the commutative case: 

Theorem 1.1 (Following [4]) 

Let A be a integral commutative Banach algebra satisfying 

the two conditions: 

i) There is a sequence in A (In)n  nonzero ideals such that 

n∩ In ={0}. 
ii) The family of closed prime ideals of A is at most 

countable. 

So all derivation in A is continuous.  

In view of addressing the issues (Q'1) and (Q'2) 

simultaneously. V. Runde uses other techniques (particularly 

accessible ideals) and shows the following result: 

Theorem 1.2 (Following [10]) 

Let A be a integral commutative Banach algebra satisfying 

the two conditions: 

i ') exists in a non-zero closed ideal I and an element a ∈A 

(a ≠ 0)) such that 1≥∩n anI ={0} 

ii ') All prime ideals of A are closed. 

So all derivation in A and every epimorphism of a Banach 

algebra B on A is continuous 

2. Preliminaries 

Definition 2.1 

A involution * on an algebra A is a map *: A → A 

satisfying the following properties.  

i) (x*)* = x for all x in A. 

ii) (x + y)* = x* + y*, for all x, y in A. 

iii) (x y)* = y* x*, for all x, y in A. 

iv) 1* = 1, 

v) ( λ  x)* = λ  x*   ∀ λ ∈ IK, x ∈ A. 

This is also called an involutive algebra; We write *-

algebra. An elements such that x* = x are called self-adjoint.  

An ideal and sub algebra, with the requirement to be *-

invariant:  x ∈ I ⇒ x* ∈ I and so on.  

As a result I * ⊂  I (and then I = I *). It follows that all * -

ideal is ideals. Also if the only *-ideals  of  A are contained in 

I are (0) and I then said that I was * -minimal.  Note that if I 

is not zero * -ideal of A, then  induces an involution on  A / I, 

also noted *, defined by: (a + I) * = a * + I.  an *-ideal is said 

*- maximal  if the only * -ideals  containing M are M and A. 

algebra is said to be simple if the only ideals of A are (0) and 

A. in case admits an involution *, we say that a is * -simple if 

the only * -ideals of A are (0) and A. Note that if A simple 

algebra equipped with an involution *, then A * -simple, but 

the converse is not true in general. 

Example 2.1 

Let A be an algebra and A° the opposite algebra A, then 

consider algebra B = A x A° equipped with Exchange 

involution * (x, y) = (y, x). So a simple check shows that B is 

an algebra * -simple but is not simple. 

Let I be a minimal left ideal of a semi-prime algebra A, 

then there is a minimal idempotent e ∈  A such that I = Ae. 

Recall the radical of Jacobson, Rad(A) of an algebra A is 

defined as the intersection of all maximal left ideals of A. 

more  If A is an *-algebra, then the A *-radical , noted 

Rad*(A), is the intersection of all ideals *-maximal of A. In 

addition, if Rad*(A)= (0), then A is said *-semi simple. 

Definition 2.2 

Let T a linear application of a Banach space X in a Banach 

space Y. Then, the separating space σ (T) of Y is the subset of 

Y defined by:  

σ(T) = {y ϵ Y/ Ǝ(xn) n ⊂  X : xn →  0 et T(xn) →  y }. 

Proposition 2.1 (Following [11]) 

Let T a linear application of a Banach space X in a Banach 

space Y. Then, T is continuous if, and only if, σ (T) = (0). 

Proposition 2.2 (Following [11]) 

The separting space an epimorphism of a Banach algebra 

A in a Banach algebra B is closed ideal.  

Proposition 2.3 (Following [11]) 

If T is an epimorphism of a Banach algebra A on a Banach 

algebra B and b∈σ (T), then 0 ∈Sp (b). 

3. Characterizations of *-Prime Algebra 

Throughout this work, the algebras considered are 

supposed to be complex, associative, unital and not 

necessarily commutative. 

A ideal I of an algebra A is prime if for all elements a,b ∈  

A, we have: aAb ⊆ I ⇒ a ∈I or b∈  I. A is semi-prime if, for 

all a ∈A, we have: aAa ⊆ I ⇒ a ∈ I. The An algebra A is 

called prime (resp. Semi-prime) if the ideal {0} is the prime 

(resp. Semi-prime). Let M ⊆ A. M is said to nil if any 

element of M is nilpotent. M is called nilpotent if there exists 

n∈IN * as Mn = {0} (the product of any n elements of M is 

zero). We call Prime radical (or nil radical); At the 

intersection of all prime ideals of A. This radical will be 

noted throughout the rest L. note that L is a semi-prime ideal 

which is contained in all semi-prime ideal of A. Thus, A is 

semi-prime if and only if L = {0}. We also show that L is a 

nil ideal containing all left (or right) nilpotent ideals. In the 

commutative case that A is prime is equivalent to saying that 

A is integral, and L is none other than the set of nilpotent 

elements of A. We also have the following important result 

that achieves the prime ideals. 

Proposition 3.1 (Following [6]) 

Let I be an ideal of an algebra A and let S be a subset of A 

stable multiplication as I ∩ S = {0}. Then there exists a 

prime ideal P in A such that P ∩ S = {0}. 

Let E be a part of an algebra A is called the left annihilator 

of E, denoted G (E), the set defined by G (E) = {a∈  A / aE = 

{0}}. Similarly, the right annihilator is set to of E defined by 

D (E) = {a ∈A / Ea = {0}}. We note Ann (E) = G (E) ∩ D 

(E). 

Definition 3.1 

Let A be an algebra. An ideal P of A is said *-prime (resp. 

*-semi Prime) when for two * -idéaux I and J of A such that 

IJ ⊂ P (resp. I² ⊂ P), then I ⊂ P or J ⊂ P (resp. I ⊂ P). 
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The algebra A is said *-Prime (resp. *-semi Premiere) if {0} 

is *-prime (resp. {0} is *-semi-prime). If P is a prime *-ideal 

of A, then P is *-prime A. Note that if A is a prime algebra 

provided with an involution *, then A is *-prime. However, 

the converse is not always true. This is the case of the 

following example: 

Example 3.1 

Let A be a prime algebra and A° the opposite algebra A. 

Consider the algebra B = A ⊕ A. with the exchange 

involution defined by *(x, y) = (y, x), B is *-prime algebra 

which is not prime. Indeed: Let I and J of two ideals of B as 

IJ = {0}. Then, (I ∩ A) (J ∩ A) = {0} ⊂ A. But A is *-Prime, 

hence (I ∩ A) = {0} or (J ∩ A) = {0}. For example, suppose 

(I ∩ A) = {0}. Then A° I = (IA)* = {0} ⊂ A. Since A is a 

prime ideal of B, that I ⊂ A, we have also, IA = {0} ⊂  A°. 

Since A° is a prime ideal of B, I ⊂ A°. Therefore, I ⊂ A ∩ A° 

= {0}. 

It is therefore natural to ask under what conditions the 

converse is true. It is subject to the following proposition: 

Proposition 3.2 

Let A *-Prime algebra. If involution is anisotropic, then A 

is prime. 

The involution is anisotropic if for all a in A, were: 

a * a = 0 ⇒  a = 0. 

Proof 

Let I and J be two ideals of A such that IJ = {0}. Then: (I
∩  I *) (J ∩  J*) = {0}. As A is *-Prime, hence (I ∩ I *) = {0} 

or (J ∩  J*) = {0}. Suppose (I ∩ I *) = {0}. So for all a in I, 

we have: aa* = 0. As * is anisotropic, a = 0 ∀ a ∈A. As a 

result I = {0}.  

In the following, we give some characterizations *-Prime 

algebras. 

Proposition 3.3 

Let A be an algebra and P prime sub-algebra (resp. Semi-

prime sub-algebra) of A. Then, G (P) = D (P) = Ann (P) is 

minimal prime ideal (resp. semi-prime ideal) of A and Ann (P) 

is the only complementary to right and left of P. Moreover, if 

Ann (A) ≠  {0}, then there is no ideal prime strictly content 

in P. 

Proof 

Let I be a right ideal of A such that PI = {0}. Then, IP is a 

right ideal of P and (IP) ² = {0}. Hence, IP = {0}, through D(P) 
⊆  G (P). Similarly, it is shown that G (P) ⊆  D(P). Therefore, 

D (P) = G (P) = Ann (P). If I is complementary right ideal P, 

then IP ⊆ I ∩ P = {0}, where I ⊆  Ann (P), which implies that 

Ann (P) is the only complementary to the right of P. Similarly, 

it is shown Ann (P) is the only complementary left of P. Let I 

and J be two ideals of A such that IJ ⊆  Ann (P). then PIJ = {0}, 

hence JPI ⊆  P and (JPI)² = {0}. As P is a prime sub-algebra, 

JPI = {0}, therefore {0} = (PJ) (PI) ⊆  P. whereas the result, PJ 

= {0} or PI = {0}, where Ann (P) is a prime ideal of A. 

Suppose now that Q is prime ideal of A such that Q ⊂  Ann (P). 

So P Ann (P) = {0} ⊂ Q, which is absurd. So Ann (P) is a 

minimal prime ideal. By similar reasoning, we easily verify 

that if Ann (P) ≠ {0}, then there is no prime ideal of A strictly 

contained in P. For the semi-prime case, the reasoning is 

similar to the prime case. 

Lemma 3.1 (Lemma Andrunakiewich) Let A be a ring, I an 

ideal of A and J an ideal of I. Then <J>3
⊆

I, where <J> is the 

ideal of A generated by J. 

Proposition 3.4 

Let A be an algebra and I, P two ideals of A such that P is 

prime, I ≠  {0} et P ∩ I ={0}. So we have: 1) I is a prime sub-

algebra which contains no prime ideal of A. 2) P is a minimal 

prime ideal of A and P = Ann (I). 

Proof 

1) Let H, K two ideals I as HK = {0}. By Lemma of 

Andrunakiewich, <H>3<K>3 ⊆
HK ={0} ⊆ P, where <H> 

(resp. <K>) is the ideal of A generated by H (resp. K) . We 

have P is a prime ideal, hence <H> ⊆ P ∩ I = {0} or <K> ⊆
P ∩ I = {0}. Therefore, I is a prime sub-algebra. If Q is an 

prime ideal strictly content in I, then PI = {0} ⊆  Q, which is 

absurd. 2) Follows immediately from 1) and the previous 

proposition. 

Proposition 3.5 

Let A be a *-prime *-algebra no prime. Then there exists a 

prime ideal P such that:  

1) P ∩  P * = {0}.  

2) P and P * are two minimal prime ideals, P = Ann (P *) 

and Ann P * = Ann(P). 

Proof 

1) We apply Zorn's lemma to the set D of ideals of A such 

that I ∩ I* = {0}. Then D has a maximal element P such 

that P ∩ P * = {0}. Let I, J be two ideals of A such that IJ

⊆ P. Then, (I ∩ I *) (J ∩ J*) (I ∩ I *) = {0}. This implies 

that I ∩ I * = {0} or J ∩  J* = {0}. Since P is maximum in 

D, then I ⊆ P or J ⊆ P . 

2) Follows immediately from the previous proposition. 

Proposition3.6 

Let A be an *- algebra. Consider the following assertion: 

1) A is *-simple  

2) A is *-Prime  

3) A is -*semi prime  

4) A is semi-prime. Then: 1) ⇒  2) ⇒  3) ⇒  4). 

Proof 

1) ⇒  2) Let I and J two non zero *-idéaux of A. Since A 

is *-simple then IJ = A² ≠  {0}.  

2) ⇒  3) obvious.  

3) ⇒  4) Let I be a left ideal of A such that I² = {0}. Then, 

(I ∩  I*) ² = {0}. Since A is* -Prime, I ∩ I * = {0}. On the 

other hand (I + I *) ² = I² + II* + I * I + (I *) ² = (I *) ² =  (I²)* 

= {0}. As a result, I ⊆ I + I * = {0}. 

Remark 3.1 

From the above proposition, we see that the concept of *-

semi prime and semi prime on A coincides, which gives an 

equivalent definition of semi-prime * -algebras, using a 

particular class ideals instead to considered all left ideals of A. 

4. Automatic Continuity 

In this work, we study the questions (Q1) and (Q2) in the 

class of *-Prime Banach *-algebra. We show that if a B is a 

*-prime Banach algebra that is not prime, then all surjective 

Homomorphism (or dense range) of an Banach algebra A 

over B is continuous (Theorem 4.1). Similarly, any derivation 



46 Youssef Tidli:  The Automatic Continuity of Linear Operators on Some Semi-Prime Banach Algebra  

 

in B is continuous (Theorem 4.2). In particular, if A is a *-

prime Banach algebra not prime, then all A complete normed 

on A are equivalent. 

Theorem 4.1 Let T be a homomorphism of Banach algebra 

A on a Banach *-algebra B. If B is *-prime not Prime and if 

T is surjective (or dense range), then T is continuous. 

Proof 

Since B is a *-prime not Prime algebra, there is a minimal 

prime nonzero P such that P ∩ P * = {0} and P = Ann (P *), P 

* = Ann (P) Proposition (5). Let ( )Tσ  be the ideal separting 

in B. Suppose σ (T) ⊄ P, then P is a closed ideal [2]. On the 

other hand, if p is a nonzero element of P, then ( )p Tσ = 

( )Tσ  (stability lemma [11]). Therefore: ( )p T Pσ ⊆ , then 

( )p Tσ = ( )Tσ ⊆ P = P . Which contradicts the assumption. 

Following ( )Tσ ⊆ P. By the same reasoning, we show that 

( )Tσ ⊆ P*. Which gives, ( )Tσ ⊆ P ∩ P* = {0}. Therefore, 

T is continuous (following [proposition 2.1]).  

Theorem 4.2 All derivation in a*-prime not prime Banach 

algebra is continuous. 

Proof 

Same proof as the previous theorem, since the separting 

space of a derivation in Banach algebra A is an ideal of A.  

Corollary 4.1 Let (A, ||. ||) be a * -Prime Banach algebra. 

Then, we have:  

i) All complete norm on A are equivalent.  

ii) The involution * is continuous. 

Proof 

i) It is enough to apply the previous theorem to the Identity 

of A.  

ii) That is to say the linear Application q of A in IR defined 

by q (x) = ||x*|| (x ∈  A).  

We easily verify that q is a complete norm on A. And 

according to i), q is equivalent to ||. ||  
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