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Abstract: The minimum travel cost is a new approach to solve the Travelling Salesman Problem (TSP). The TSP library 

website (TSPLIB) provides several TSP problems with their best knownsolutions as a means to test any proposed algorithm. 

The present paper successfully applies the minimum travel cost algorithmto the 43 nodes P43problem which has the value of 

5620 for its best knownsolution.This paper provides the details of the solution for value of 5621. 

Keywords: Traveling Salesman Problem, TSP, Minimum Travel Cost Approach, TSPLIB, TSP 43-nodes 

 

1. Introduction 

The Travelling Salesman Problem (TSP) is defined as a set 

of nodes that represent a number N of cities, where the 

distance (cost) between each two nodes is known, and it is 

required the tour with least cost that starts from one node and 

visits all other nodes and returns back to the start node, in 

condition that each node is visited only once. TSP is 

mathematically presented as a full graph with number of 

nodes N. TSP is a prototype of hard combinatorial 

optimization problem where the possible solutions are (N-1)! 

and is considered NP-hard and NP-complete. The new 

approach of minimum travel cost provides convergent 

solution for the TSP problem (Eleiche and Markus 2010). 

The TSPLIB website 

(https://www.tsp.gatech.edu/problem/index.html) provides 

sample TSP problems with known solutions in order to test 

the validity of proposed solutions for this interesting problem. 

This paper addresses the P43 problem which is a symmetrical 

graph that has a value of 5620 for the least cost tour visiting 

all nodes. The P43 problem was selected to be solved using 

the new algorithm as it is the smallest problem in size after 

the previously solved problem with 17 nodes. 

2. Solution for P43Based on Minimum 

Travel Cost 

The P43 problem is composed from 43 nodes, and it is an 

asymmetrical network where Cij ≠Cji. The input data of the 

problem as downloaded from the website is shown in Table 1. 

Table 1. Cost of edges (Origin-Destination Matrix) (diagonal valuedv=99999) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 dv 26 26 26 10 60 60 60 68 68 68 68 92 92 

2 36 dv 0 0 36 6 6 6 10 10 10 10 12 12 

3 36 0 dv 0 36 6 6 6 10 10 10 10 12 12 

4 36 0 0 dv 36 6 6 6 10 10 10 10 12 12 

5 10 26 26 26 dv 26 26 26 30 30 30 30 32 32 

6 74 6 6 6 36 dv 0 0 4 4 4 4 6 6 

7 74 6 6 6 36 0 dv 0 4 4 4 4 6 6 

8 74 6 6 6 36 0 0 dv 4 4 4 4 6 6 

9 82 10 10 10 40 4 4 4 dv 0 0 0 12 12 

10 82 10 10 10 40 4 4 4 0 dv 0 0 12 12 

11 82 10 10 10 40 4 4 4 0 0 dv 0 12 12 

12 82 10 10 10 40 4 4 4 0 0 0 dv 12 12 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

13 106 12 12 12 42 6 6 6 6 6 6 6 dv 0 

14 106 12 12 12 42 6 6 6 6 6 6 6 0 dv 

15 106 12 12 12 42 6 6 6 6 6 6 6 0 0 

16 130 16 16 16 46 12 12 12 16 16 16 16 12 12 

17 130 16 16 16 46 12 12 12 16 16 16 16 12 12 

18 130 16 16 16 46 12 12 12 16 16 16 16 12 12 

19 178 96 96 96 126 24 24 24 24 24 24 24 24 24 

20 178 96 96 96 126 24 24 24 24 24 24 24 24 24 

21 178 96 96 96 126 24 24 24 24 24 24 24 24 24 

22 70 46 46 46 76 56 56 56 56 56 56 56 76 76 

23 46 22 22 22 56 56 56 56 64 64 64 64 88 88 

24 46 22 22 22 56 56 56 56 64 64 64 64 88 88 

25 52 16 16 16 52 22 22 22 26 26 26 26 28 28 

26 56 22 22 22 46 22 22 22 26 26 26 26 28 28 

27 134 30 30 30 60 26 26 26 30 30 30 30 24 24 

28 37 1 1 1 37 7 7 7 11 11 11 11 13 13 

29 37 1 1 1 37 7 7 7 11 11 11 11 13 13 

30 75 7 7 7 37 1 1 1 5 5 5 5 7 7 

31 75 7 7 7 37 1 1 1 5 5 5 5 7 7 

32 83 11 11 11 41 5 5 5 1 1 1 1 13 13 

33 83 11 11 11 41 5 5 5 1 1 1 1 13 13 

34 107 13 13 13 43 7 7 7 7 7 7 7 1 1 

35 107 13 13 13 43 7 7 7 7 7 7 7 1 1 

36 31 7 7 7 41 41 41 41 49 49 49 49 73 73 

37 37 1 1 1 37 7 7 7 11 11 11 11 13 13 

38 41 7 7 7 31 7 7 7 11 11 11 11 13 13 

39 5048 5014 5014 5014 5038 5014 5014 5014 5018 5018 5018 5018 5020 5020 

40 5048 5014 5014 5014 5038 5014 5014 5014 5018 5018 5018 5018 5020 5020 

41 5126 5022 5022 5022 5052 5018 5018 5018 5022 5022 5022 5022 5016 5016 

42 5126 5022 5022 5022 5052 5018 5018 5018 5022 5022 5022 5022 5016 5016 

43 5126 5022 5022 5022 5052 5018 5018 5018 5022 5022 5022 5022 5016 5016 

Table 1. Continued 

0 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

1 92 116 116 116 164 164 164 84 36 36 42 46 120 27 

2 12 16 16 16 96 96 96 64 22 22 16 22 30 1 

3 12 16 16 16 96 96 96 64 22 22 16 22 30 1 

4 12 16 16 16 96 96 96 64 22 22 16 22 30 1 

5 32 36 36 36 116 116 116 84 46 46 42 36 50 27 

6 6 12 12 12 24 24 24 112 60 60 22 22 26 7 

7 6 12 12 12 24 24 24 112 60 60 22 22 26 7 

8 6 12 12 12 24 24 24 112 60 60 22 22 26 7 

9 12 16 16 16 24 24 24 112 68 68 26 26 30 11 

10 12 16 16 16 24 24 24 112 68 68 26 26 30 11 

11 12 16 16 16 24 24 24 112 68 68 26 26 30 11 

12 12 16 16 16 24 24 24 112 68 68 26 26 30 11 

13 0 12 12 12 24 24 24 124 92 92 28 28 24 13 

14 0 12 12 12 24 24 24 124 92 92 28 28 24 13 

15 dv 12 12 12 24 24 24 124 92 92 28 28 24 13 

16 12 dv 0 0 12 12 12 232 116 116 32 32 28 17 

17 12 0 dv 0 12 12 12 232 116 116 32 32 28 17 

18 12 0 0 dv 12 12 12 232 116 116 32 32 28 17 

19 24 12 12 12 dv 0 0 352 164 164 112 112 40 97 

20 24 12 12 12 0 dv 0 352 164 164 112 112 40 97 

21 24 12 12 12 0 0 dv 352 164 164 112 112 40 97 

22 76 160 160 160 232 232 232 dv 24 24 30 30 96 46 

23 88 112 112 112 160 160 160 48 dv 0 6 10 84 22 

24 88 112 112 112 160 160 160 48 0 dv 6 10 84 22 

25 28 32 32 32 112 112 112 48 6 6 dv 6 14 16 

26 28 32 32 32 112 112 112 48 10 10 6 dv 14 22 

27 24 22 22 22 40 40 40 144 88 88 14 14 dv 30 

28 13 17 17 17 97 97 97 64 22 22 16 22 30 dv 

29 13 17 17 17 97 97 97 64 22 22 16 22 30 0 

30 7 13 13 13 25 25 25 112 60 60 22 22 26 6 

31 7 13 13 13 25 25 25 112 60 60 22 22 26 6 

32 13 17 17 17 25 25 25 112 68 68 26 26 30 10 
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0 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

33 13 17 17 17 25 25 25 112 68 68 26 26 30 10 

34 1 13 13 13 25 25 25 124 92 92 28 28 24 12 

35 1 13 13 13 25 25 25 124 92 92 28 28 24 12 

36 73 97 97 97 145 145 145 64 16 16 22 26 100 14 

37 13 17 17 17 97 97 97 64 22 22 16 22 30 8 

38 13 17 17 17 97 97 97 64 26 26 22 16 30 14 

39 5020 5024 5024 5024 5104 5104 5104 5064 5026 5026 5022 5016 5030 5014 

40 5020 5024 5024 5024 5104 5104 5104 5064 5026 5026 5022 5016 5030 5014 

41 5016 5014 5014 5014 5032 5032 5032 5160 5104 5104 5030 5030 5016 5022 

42 5016 5014 5014 5014 5032 5032 5032 5160 5104 5104 5030 5030 5016 5022 

43 5016 5014 5014 5014 5032 5032 5032 5160 5104 5104 5030 5030 5016 5022 

Table 1. Continued 

0 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

1 27 61 61 69 69 93 93 21 27 31 372 372 446 446 446 

2 1 7 7 11 11 13 13 7 1 7 348 348 356 356 356 

3 1 7 7 11 11 13 13 7 1 7 348 348 356 356 356 

4 1 7 7 11 11 13 13 7 1 7 348 348 356 356 356 

5 27 27 27 31 31 33 33 31 27 21 362 362 376 376 376 

6 7 1 1 5 5 7 7 45 7 7 348 348 352 352 352 

7 7 1 1 5 5 7 7 45 7 7 348 348 352 352 352 

8 7 1 1 5 5 7 7 45 7 7 348 348 352 352 352 

9 11 5 5 1 1 13 13 53 11 11 352 352 356 356 356 

10 11 5 5 1 1 13 13 53 11 11 352 352 356 356 356 

11 11 5 5 1 1 13 13 53 11 11 352 352 356 356 356 

12 11 5 5 1 1 13 13 53 11 11 352 352 356 356 356 

13 13 7 7 7 7 1 1 77 13 13 354 354 350 350 350 

14 13 7 7 7 7 1 1 77 13 13 354 354 350 350 350 

15 13 7 7 7 7 1 1 77 13 13 354 354 350 350 350 

16 17 13 13 17 17 13 13 101 17 17 358 358 354 354 354 

17 17 13 13 17 17 13 13 101 17 17 358 358 354 354 354 

18 17 13 13 17 17 13 13 101 17 17 358 358 354 354 354 

19 97 25 25 25 25 25 25 149 97 97 438 438 366 366 366 

20 97 25 25 25 25 25 25 149 97 97 438 438 366 366 366 

21 97 25 25 25 25 25 25 149 97 97 438 438 366 366 366 

22 46 56 56 56 56 76 76 40 46 46 380 380 446 446 446 

23 22 56 56 64 64 88 88 16 22 26 360 360 434 434 434 

24 22 56 56 64 64 88 88 16 22 26 360 360 434 434 434 

25 16 22 22 26 26 28 28 22 16 22 356 356 364 364 364 

26 22 22 22 26 26 28 28 26 22 16 350 350 364 364 364 

27 30 26 26 30 30 24 24 104 30 30 364 364 350 350 350 

28 0 6 6 10 10 12 12 14 8 14 348 348 356 356 356 

29 dv 6 6 10 10 12 12 14 8 14 348 348 356 356 356 

30 6 dv 0 4 4 6 6 52 14 14 348 348 352 352 352 

31 6 0 dv 4 4 6 6 52 14 14 348 348 352 352 352 

32 10 4 4 dv 0 12 12 60 18 18 352 352 356 356 356 

33 10 4 4 0 dv 12 12 60 18 18 352 352 356 356 356 

34 12 6 6 6 6 dv 0 84 20 20 354 354 350 350 350 

35 12 6 6 6 6 0 dv 84 20 20 354 354 350 350 350 

36 14 48 48 56 56 80 80 dv 6 10 352 352 426 426 426 

37 8 14 14 18 18 20 20 6 dv 6 348 348 356 356 356 

38 14 14 14 18 18 20 20 10 6 dv 342 342 356 356 356 

39 5014 5014 5014 5018 5018 5020 5020 5018 5014 5008 dv 0 14 14 14 

40 5014 5014 5014 5018 5018 5020 5020 5018 5014 5008 0 dv 14 14 14 

41 5022 5018 5018 5022 5022 5016 5016 5096 5022 5022 14 14 dv 0 0 

42 5022 5018 5018 5022 5022 5016 5016 5096 5022 5022 14 14 0 dv 0 

43 5022 5018 5018 5022 5022 5016 5016 5096 5022 5022 14 14 0 0 dv 

 

By analyzing Table 1, there are identical nodes such as 

nodes 2,3,4. These identical nodes have the same cost values 

to other nodes in the network, while their inner-cost equals to 

zero. This means that only one node of them can be kept for 

solution, and then the other nodes are inserted left or right the 

remaining one, as it will be shown later. Similarly, nodes 

{6,7,8}, {9,10,11,12}, {13,14,15}, {16,17,18}, {19,20,21}, 

{28,29}, {30,31}, {32,33}, {34,35}, {39,40} and {41,42,43} 
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are identical nodes. Table 2 list the identical nodes in the 

network, and the selected node to keep. Any of the identical 

nodes can be kept for the solution, however the node with 

smaller ID will be kept. 

Table 2. List of identical nodes 

# List of identical nodes Selected node to keep Nodes to be removed from network 

1 2, 3, 4 2 3, 4 

2 6, 7, 8 6 7, 8 

3 9, 10, 11, 12 9 10, 11, 12 

4 13, 14, 15 13 14, 15 

5 16, 17, 18 16 17, 18 

6 19, 20, 21 19 20, 21 

7 23, 24 23 24 

8 28, 29 28 29 

9 30, 31 30 31 

10 32, 33 32 33 

11 34, 35 34 35 

12 39, 40 39 40 

13 41, 42, 43 41 42, 43 

 

From the Table 2, there are thirteen groups of identical 

nodes. From each group, only one node will be kept within 

network and the other nodes will be removed, and a new 

reduced cost matrix will be generated, and shown in Table 3. 

The minimum cycle will go through the identical nodes in 

any order and are alternate for minimum cycle. This means 

that the minimum cycle include nodes (2,3,4) in this order, or 

in any other order such that (4,3,2) or (3,4,2). 

The reduced network in Table 3will have same solution as 

original network in Table 1. The reduced network will have 

22 nodes, while 21 nodes will be removed. 

Table 3. Reduced cost of edges (Origin-Destination Matrix)(diagonal valued v=99999) 

 
1 2 5 6 9 13 16 19 22 23 25 26 27 28 30 32 34 36 37 38 39 41 

1 dv 26 10 60 68 92 116 164 84 36 42 46 120 27 61 69 93 21 27 31 372 446 

2 36 dv 36 6 10 12 16 96 64 22 16 22 30 1 7 11 13 7 1 7 348 356 

5 10 26 dv 26 30 32 36 116 84 46 42 36 50 27 27 31 33 31 27 21 362 376 

6 74 6 36 dv 4 6 12 24 112 60 22 22 26 7 1 5 7 45 7 7 348 352 

9 82 10 40 4 dv 12 16 24 112 68 26 26 30 11 5 1 13 53 11 11 352 356 

13 106 12 42 6 6 dv 12 24 124 92 28 28 24 13 7 7 1 77 13 13 354 350 

16 130 16 46 12 16 12 dv 12 232 116 32 32 28 17 13 17 13 101 17 17 358 354 

19 178 96 126 24 24 24 12 dv 352 164 112 112 40 97 25 25 25 149 97 97 438 366 

22 70 46 76 56 56 76 160 232 dv 24 30 30 96 46 56 56 76 40 46 46 380 446 

23 46 22 56 56 64 88 112 160 48 dv 6 10 84 22 56 64 88 16 22 26 360 434 

25 52 16 52 22 26 28 32 112 48 6 dv 6 14 16 22 26 28 22 16 22 356 364 

26 56 22 46 22 26 28 32 112 48 10 6 dv 14 22 22 26 28 26 22 16 350 364 

27 134 30 60 26 30 24 22 40 144 88 14 14 dv 30 26 30 24 104 30 30 364 350 

28 37 1 37 7 11 13 17 97 64 22 16 22 30 dv 6 10 12 14 8 14 348 356 

30 75 7 37 1 5 7 13 25 112 60 22 22 26 6 dv 4 6 52 14 14 348 352 

32 83 11 41 5 1 13 17 25 112 68 26 26 30 10 4 dv 12 60 18 18 352 356 

34 107 13 43 7 7 1 13 25 124 92 28 28 24 12 6 6 dv 84 20 20 354 350 

36 31 7 41 41 49 73 97 145 64 16 22 26 100 14 48 56 80 dv 6 10 352 426 

37 37 1 37 7 11 13 17 97 64 22 16 22 30 8 14 18 20 6 dv 6 348 356 

38 41 7 31 7 11 13 17 97 64 26 22 16 30 14 14 18 20 10 6 dv 342 356 

39 5048 5014 5038 5014 5018 5020 5024 5104 5064 5026 5022 5016 5030 5014 5014 5018 5020 5018 5014 5008 dv 14 

41 5126 5022 5052 5018 5022 5016 5014 5032 5160 5104 5030 5030 5016 5022 5018 5022 5016 5096 5022 5022 14 dv 

 

3. Minimum Travel Cost Array 

The minimum travel cost array for the network is the 

foundation for this approach. It will be created such that the 

cost to travel each node is the minimal possible value, as 

shown in Table 4. The least arrival and departure cost will be 

selected. 
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Table 4. Initial minimum travel cost array 

Carrival From Node To Cdeparture Cost Sum 

10 5 1 5 10 20 

1 28,37 2 28 1 2 

10 1 5 1 1 2 

1 30 6 30 1 2 

1 32 9 32 1 2 

1 34 13 34 1 2 

12 6,19,13 16 6 12 24 

12 16 19 16 12 24 

48 25,26 22 23 24 72 

6 25 23 25 6 12 

6 23,26 25 23,26 6 12 

6 25 26 25 6 12 

14 25,26 27 25,26 14 28 

1 2 28 2 1 2 

1 6 30 6 1 2 

1 9 32 9 1 2 

1 13 34 13 1 2 

6 37 36 37 6 12 

1 2 37 2 1 2 

6 37 38 37 6 12 

14 41 39 41 14 28 

14 39 41 39 14 28 

173 Total 140 304 

Carrival is the cost to arrive to node and Cdeparture is the cost to leave the node 

3.1. Initial Array 

The initial minimum travel array, displayed in Table 4, 

describes important characteristics for the network. For each 

node, the least cost to arrive is selected, and the least cost to 

depart from node is also selected. 

Some nodes have more than one node as minimum travel 

cost, such as node (16) has three nodes with same value in 

arrival direction, and node (25) has two nodes in both 

directions. 

The cost of the least cycle will exceed the higher value of 

each side sum of cost which equals 173 from arrival side. 

The initial array in Table 4 does not include the required 

least cycle due to the following reasons: 

1) The total cost for both sides are not equal 

2) Closed loops exist for same node such as from 5 to 1, 

and from 1 to 5. 

3.2. Adjacent Nodes 

Adjacent-nodesare nodes tied to each other, where the 

minimal travel cost for node (i) is (jij) and in the same time 

the minimal travel cost for node (j) is (iji). This implies that 

the required minimal cycle will go through (ij or ji), and both 

must be adjacent. In Table 4, nodes (1,5) and nodes (39,41) 

are examples for adjacent-nodes. 

Table 5. List of adjacent-nodes 

# Adjacent-nodes 

1 (1,5) 

2 (6,30) 

3 (9,32) 

4 (13,34) 

5 (39,41) 

These nodes give more degree of freedom for solution and 

can be possible alternates for minimum required cycle. Table 

5 shows the list of adjacent-nodes. 

The second version from minimum travel array will be 

created to avoid closed loops for same nodes, which is the 

case of all adjacent-nodes as shown in Table 6. 

3.3. Second Array 

Table 6. Second minimum travel cost array 

Carrival From Node To Cdeparture Cost Sum 

10 5 1 36 21 31 

1 37 2 28 1 2 

10 1 5 38 21 31 

1 30 6 9 4 5 

1 32 9 6 4 5 

1 34 13 6 6 7 

12 19,13 16 6 12 24 

12 16 19 6,9,13 24 36 

48 25,26 22 23 24 72 

6 25 23 26 10 16 

6 23 25 26 6 12 

6 25 26 23 10 16 

14 25 27 26 14 28 

1 2 28 30 6 7 

1 6 30 32 4 5 

1 9 32 30 4 5 

1 13 34 30 6 7 

6 37 36 2 7 13 

6 38 37 2 1 7 

6 37 38 2 7 13 

342 38 39 41 14 356 

350 13 41 39 14 364 

837 Total 225 1062 

The blue fill indicates the change in values 

The red bold means the node values can be reversed 

Table 6 includes the second minimum travel array for each 

node, after preventing same node to be in arrival and 

departure directions. As example, node (1) in Table 4 had to 

start from node (5) to node (1) and return back to node (5), 

which is not allowed by definition in TSP. The change from 

Table 4to Table 6is marked in blue fill for cells. 

Also, there are some nodes where the travel cost is 

constant in both directions, such as node (6). The minimal 

cost to cross node (6) is 5, and there are two possibilities for 

this travel. The first is to start from node (9) to node (6) then 

from node (6) to node (30). The second is the opposite 

direction which is (30, 6, 9). Both have to be considered for 

the required minimum cycle.The nodes where both directions 

have equal cost have red font with bold style. 

Table 6 also shows increase in total cost for both sides, 

from arrival direction cost is 837, and from departure 

direction cost is 225. This means that the cost of least cycle 

will exceed 837. 

3.4. Opposite Links 

The second array in Table 6, although it prevented closed 

loops for the same node, allowed the opposite direction for 

same edge in different nodes. For example, in node (1), the 

travel path starts from node (1) to node (5). If we consider 
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node (5), its travel path starts from node (5) to node (1). Such 

contradiction needs to be prevented. Table 7 displays 

opposite edges in minimum travel array. 

Table 7. Opposite edges 

Carrival From Node To Cdeparture 

10 5 1   

10 1 5   

1 30 6   

1 6 30   

  9 6 4 

  6 9 4 

1 32 9   

1 9 32   

1 34 13   

1 13 34   

12 19,13 16   

12 16 19   

6 25 23   

6 23 25   

  23 26 10 

  26 23 10 

  30 32 4 

  32 30 4 

  39 41 14 

  41 39 14 

In Table 7, it is clear that adjacent-nodes appear in 

opposite directions as bounded by solid border. Testing each 

direction for adjacent-nodes is important to decide which 

direction has least cost and to be added to least cycle. The 

analysis will start with one-direction nodes and of highest 

cost, which are adjacent-nodes (1,5) and (39,41). 

3.5. Resolving Opposite Nodes 

Figure 1. shows the two possibility to arrange nodes (1,5) 

and (39,41). 

 

Figure 1. Adjacent nodes (1,5) and (39,41) 

Figure 1 shows that the orders of adjacent-nodes (1,5) and 

(5,1) have same cost of 62. However, the cost of order (39,41) 

is 5370 while its opposite direction (41,39) is higher by 2. In 

order to maintain minimal cost for network the order of (39, 

41) will be selected. This decision will imply that the order of 

(1,5) to be selected so that the node (38) can be common 

between them, as shown in Figure 2. 

 

Figure 2. Minimum order for adjacent nodes 

The minimum travel array will be updated to reflect the 

minimum order in Figure 2. Table 8 displays the third version 

of minimum travel array after its update with ordered 

adjacent-nodes shown in Figure 2. The cost of minimum 

cycle will exceed 5573 (sum of departure cost). In order for 

better understanding for the minimum travel array in Table 8, 

it will be rearranged as shown in Table 9. 

Table 8. Third minimum travel array 

Carrival From Node To Cdeparture Cost Sum 

31 36 1 5 10 41 

1 37 2 28 1 2 

10 1 5 38 21 31 

1 30 6 9 4 5 

1 32 9 6 4 5 

1 34 13 6 6 7 

5014 41 16 6 12 5026 

12 16 19 6,9,13 24 36 

48 25,26 22 23 24 72 

6 25 23 26 10 16 

6 23 25 26 6 12 

6 25 26 23 10 16 

14 25 27 26 14 28 

1 2 28 30 6 7 

1 6 30 32 4 5 

1 9 32 30 4 5 

1 13 34 30 6 7 

6 37 36 1 31 37 

7 6 37 2 6 13 

21 5 38 39 342 363 

342 38 39 41 14 356 

14 39 41 16 5014 5028 

5545 Total 5573 11118 

Green cells for nodes on minimum cycle. 

Black bold nodes have final decision. 

Table 9. Third minimum travel array (rearranged) 

Carrival From Node To Cdeparture Cost Sum 

6 37 36 1 31 37 

31 36 1 5 10 41 

10 1 5 38 21 31 

21 5 38 39 342 363 

342 38 39 41 14 356 
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14 39 41 16 5014 5028 

5014 41 16 6 12 5026 

1 37 2 28 1 2 

1 30 6 9 4 5 

1 32 9 6 4 5 

1 34 13 6 6 7 

12 16 19 6,9,13 24 36 

48 25,26 22 23 24 72 

6 25 23 26 10 16 

6 23 25 26 6 12 

6 25 26 23 10 16 

14 25 27 26 14 28 

1 2 28 30 6 7 

1 6 30 32 4 5 

1 9 32 30 4 5 

1 13 34 30 6 7 

7 6 37 2 6 13 

5545 Total 5573 11118 

In Table 9, some nodes have opposite directions, such as 

node (6) is connected from 30 to 6, while node (30) has 

connection from 6 to 30, this connection must be resolved. 

As node (6) and node (30) both can be reversed without 

change in cost, node (6) will remain constant, and node (30) 

will be reversed. Also, nodes (9, 23, 30, 34) will reversed as 

shown in Table 10. 

Table 10. Third minimum travel array (single direction all links) 

Carrival From Node To Cdeparture Cost Sum 

6 37 36 1 31 37 

31 36 1 5 10 41 

10 1 5 38 21 31 

21 5 38 39 342 363 

342 38 39 41 14 356 

14 39 41 16 5014 5028 

5014 41 16 6 12 5026 

1 37 2 28 1 2 

1 30 6 9 4 5 

4 6 9 32 1 5 

1 34 13 6 6 7 

12 16 19 6,9,13 24 36 

48 25,26 22 23 24 72 

10 26 23 25 6 16 

6 23 25 26 6 12 

6 25 26 23 10 16 

14 25 27 26 14 28 

1 2 28 30 6 7 

4 32 30 6 1 5 

1 9 32 30 4 5 

6 30 34 13 1 7 

7 6 37 36 6 13 

5560 Total 5558 11118 

Highlighted nodes in blue are reversed in this table 

In Table 10, all the opposite links were resolved. The 

minimum bound for the network is 5560 from arrival side. 

3.6. Starting Connecting Nodes 

After the arrangement of all links in unique directions, the 

solution will be started. The node with the highest travel cost 

will start connecting to minimum cycle. FromTable 10 Third 

minimum travel array (single direction all links)Table 9, node 

(22) has the highest travel cost, in addition it has single 

direction from node (25) or (26) to node (23). In order to 

make decision about the order of node (22), nodes 

(23,25,26,27) need to be analysed in the same time. It is clear 

that these five nodes are adjacent to each other. 

Figure 3 displays the possible order for these nodes, the 

lower order has cost of 92 which is less than the upper order. 

The arrival and departure for these nodes need also to be 

minimal. 

 

Figure 3. Possible order for adjacent-nodes (22,23,25,26,27) 

 

Figure 4. Arrival and departure possibilities for adjacent-nodes 

(22,23,25,26,27) 

From Figure 4, the minimum cost to arrive to adjacent-

nodes is 16, same as the minimum cost to leave them. Node 

(38) cannot be used anymore as it was connected previously. 

The order of upper nodes in Figure 3 will be changed to 

allow the cluster of nodes to start from node (25) and end at 

node (23), as shown in Figure 5. 

 

Figure 5. Modified order for nodes (22,23,25,26,27) 

Now, the minimum travel array in Table 10 will be updated 

to reflect the developing solution. 
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3.7. Developing the Solution (Fourth Array) 

Table 11. Fourth minimum travel array 

Carrival From Node To Cdeparture Cost Sum 

1 37 2 25 16 17 

16 2 25 27 14 30 

14 25 27 26 14 28 

14 27 26 22 48 62 

48 26 22 23 24 72 

24 22 23 36 16 40 

16 23 36 1 31 47 

31 36 1 5 10 41 

10 1 5 38 21 31 

21 5 38 39 342 363 

342 38 39 41 14 356 

14 39 41 16 5014 5028 

5014 41 16 6 12 5026 

1 30 6 9 4 5 

4 6 9 32 1 5 

1 34 13 6 6 7 

12 16 19 6,9,13 24 36 

7 6 28 30 6 13 

4 32 30 6 1 5 

1 9 32 30 4 5 

6 30 34 13 1 7 

7 6 37 2 6 13 

5608 Total 5629 11237 

In Table 11, the remaining maximum travel cost is for 

node (19). It will have arrival node from node (16). 

Table 12. Fourth array with node (19) connected 

Carrival From Node To Cdeparture Cost Sum 

1 37 2 25 16 17 

16 2 25 27 14 30 

14 25 27 26 14 28 

14 27 26 22 48 62 

48 26 22 23 24 72 

24 22 23 36 16 40 

16 23 36 1 31 47 

31 36 1 5 10 41 

10 1 5 38 21 31 

21 5 38 39 342 363 

342 38 39 41 14 356 

14 39 41 16 5014 5028 

5014 41 16 19 12 5026 

12 16 19 6,9,13 24 36 

1 30 6 9 4 5 

4 6 9 32 1 5 

1 34 13 6 6 7 

7 6 28 30 6 13 

4 32 30 6 1 5 

1 9 32 30 4 5 

6 30 34 13 1 7 

7 6 37 2 6 13 

5608 Total 5629 11237 

The solution now is developed based on minimum cost 

travel for high-cost nodes, as shown in Figure 6.  

 

Figure 6. Node (19) connected to solution 

3.8. Connecting Remaining Nodes 

Furthermore, four groups of adjacent-nodes, making four 

clusters need to be connected in minimal cost to the cycle in 

Figure 6. The group of nodes (2,28,37) have to arrive to node 

(25), and all three nodes have same arrival cost. Also, same 
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group has to depart from group of nodes (6,30), as shown in Figure 7. 

 

Figure 7. Possible decisions for Node (19) departure 

In Figure 7, cluster (6,30) is required to be arrival for 

cluster (2,28,37) to maintain minimal connectivity. So, the 

cluster (6,30) will not be available for node (19) 

departure.This will reduce the possibility of node (19) to 

depart only to node (13) or node (9). This solution is shown 

in Figure 8.Also, as Figure 8 displays, the cluster (6,30) 

needs to arrive from node (9). Also, cluster (13,34) needs to 

depart to node (32). This means that the cluster (9,32) will 

not be departure for node (19). This leads that the cluster 

(13,34) will remain the only option for the departure of node 

(19). 

 

Figure 8. Decision for Nodes (2, 28, 37) 
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Figure 9 displays the development of he solution and the arrangement of adjacent-nodes in minimal cost. After that the final 

solution is achieved. 

 

Figure 9. Decision for Nodes (19, 34, 9) 

3.9. Final Solution for Reduced Network 

 

Figure 10. Final solution for reduced network 
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Final solution is displayed in Figure 10. In Figure 11, another non-least cycle is displayed. 

 

Figure 11. Non-least cycle (cost = 5624) 

In Figure 12, Figure 13, Figure 14, and Figure 15, there are four near-minimum cycles for the reduced network. 

 

Figure 12. Non-least cycle (cost = 5628) 
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Figure 13. Non-least cycle (cost = 5629) 

 

Figure 14. Non-least cycle (cost = 5630) 



 Pure and Applied Mathematics Journal 2015; 4(1): 9-23  21 

 

 

Figure 15. Non-least cycle (cost = 5633) 

3.10. Final Solution for Full Matrix 

By returning to the original problem of full matrix, all the identical nodes are connected with zero cost to least cycle, and the 

final solution is displayed in Figure 16. 

 

Figure 16. Final solution for full network 

Green nodes are from reduced network 

Blue nodes were not included in reduced network 
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Table 13. Final solution array 

Carrival From Node To Cdeparture Cost Sum 

31 36 1 5 10 41 

10 1 5 38 21 31 

21 5 38 39 342 363 

342 38 39 41 14 356 

14 39 41 16 5014 5028 

5014 41 16 19 12 5026 

12 16 19 13 24 36 

24 19 13 34 1 25 

1 13 34 32 6 7 

6 34 32 9 1 7 

1 32 9 6 4 5 

4 9 6 30 1 5 

1 6 30 28 6 7 

6 30 28 2 1 7 

1 28 2 37 1 2 

1 2 37 25 16 17 

16 37 25 27 14 30 

14 25 27 26 14 28 

14 27 26 22 48 62 

48 26 22 23 24 72 

24 22 23 36 16 40 

16 23 36 1 31 47 

5621 Total 5621 11242 

4. Summary of Approach 

1) Discover the identical nodes where their inner-cost 

equals zero in original network (Table 2), and remove 

them. Then, create the reduced network to be solved 

(Table 3). 

2) Create the minimum travel cost array (Table 4) based 

absolute minimum cost of arrival to, and departure 

from, for each node in the network. 

3) Discover adjacent-nodes in reduced network (Table 5). 

They make clusters in network, and need to be joined 

in minimal cost, and have minimal arrival and 

departure cost to least cycle. 

4) Create 2
nd

 minimum travel array (Table 6), where the 

arrival node is not the same as departure node for each 

node. 

5) Create 3
rd

 minimum travel array (Table 10), to remove 

opposite links in 2
nd

 array. 

6) Compute the minimum bound for the network. It 

equals the maximum value from the total cost of 

arrivalsideor the total cost of departure side from 3
rd

 

array (Table 10). 

7) Start developing the solution by selecting the node with 

the highest travel cost and single direction to connect it 

to the least cycle (node 22 in Table 10). 

8) For each cluster of nodes, the inner-cost of its nodes in 

addition to its arrival and departure cost must be 

minimal (Figure 4). 

9) Compute available alternatives for the least cycle. 

10) The first solution achieved solution, if it is not the least 

cycle, then it is the maximum bound for the network. 

 

5. Discussion 

1. The minimum travel cost approach is very effective in 

solving the general case for TSP. It starts with the least 

arrival and least departure cost for each node. 

2. This approach computes a deterministic minimum 

bound for TSP based on the minimal travel for each 

node. 

3. The minimum travel cost for each node is computed 

under the following conditions: 

a. Arrival node is different than departure node 

b. Cost to travel the node (i) is minimum (Ci= Cai + Cid= 

minimum) where (i) is the node of interest, (a) is the 

arrival node, and (d) is the departure node 

c. The link (ai) and the link (id) should not exist in 

opposite direction for any other node. 

4. The solution should start with nodes with highest travel 

cost and uni-direction. 

5. Adding any number of nodes identical to any node, with 

cost of zero to this node, does not affect the cost of 

solution. 

6. Each node should follow its minimal path unless it is 

used as minimal arrival or departure for another node. 

7. The best known solution in the TSPLIB website is 5620. 

However, the best solution achieved by the author is 

5621. 

8. The tables and computation were developed using 

Microsoft Excel spreadsheet. 

6. Conclusion 

The minimum travel cost approach is an effective 

algorithm to determine the minimum bound, maximum 

bound, and near-exact least cycle in polynomial time. It 

discovers the patterns and clusters which dominate the least 

cycle. However, this approach does not verify the least cycle 

or give its deterministic value.The minimum travel cost 

algorithm analyses the TSP in details, and is able to discover 

the possible realizations for the least cost tour which is not 

possible in other heuristic or exact algorithms (Gutin and 

Punnen 2007). 

This approach can be used reversely to determine the 

longest cycle for TSP. 
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