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Abstract: Curves given in a parametric form are studied in this paper. Curves are continuous on the left in the general case. 
Their corresponding parameters belong to the definitional intervals which is possible to not coincide for the different curves. 
Moreover, the points of discontinuity (if they exist) are first kind (jump discontinuity) and they are specific for each curve. Upper 
estimates of the Euclidean distance between two such curves are found. The results obtained are used in studies of the solutions 
of impulsive differential equations. Sufficient conditions for the orbital Euclidean stability of the solutions of such equations in 
respect to the impulsive effects on the initial condition and impulive moments are found. This type of stability is introduced and 
studied here for the first time. 
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1.Introduction 

Finding the upper estimates of the Euclidean distance 
between parametric curves (including the case where the 
curves are piecewise continuous) is an important task. For the 
convenience, we will consider that the parameter of these 
curves represents the time. Qualitative research related to the 
orbital Euclidean stability of the solutions of impulsive 
differential equations can start after finding the 
above-mentioned estimates and more precise of the 
technology for their receiving. It is known that, the trajectories 
of these equations are curves which are piecewise continuous. 
They are continuous on the left hand side in their 
corresponding interval of existence. These points of 
discontinuity are first kind (see [2], [3], [10], [12], [14], [19] 
and [24]). In the case where the differential equations have 
variable impulsive moments their non coinciding solutions 
(trajectories) possess different sets of breakpoints (see [4], [5], 
[8], [9] and [16]). Therefore, in the paper, we explore and 
assesses the Euclidean distance between parametric curves 
which are piecewise continuous on their left hand side and 
which possess specific (own) moments of discontinuity of the 
first kind. The obtained results are applied to the study of 
orbital Euclidean stability which is specific for the equations 
with impulsive effects and is introduced in this paper. Should 
be noted that the impulsive differential equations are 

convenient mathematical apparatus for a description of 
dynamic phenomena subjected to the discrete short term 
external influences. Due to its wide application, the qualitative 
properties of these equations are examined seriously (see [1], 
[7], [11], [13], [15] - [18], [20] - [23] and [25]). 

2. Preliminary Remarks and Results 

We will use the following notations. Let the points 

( )1 2, ,..., na a a a  and ( )1 2, ,..., n
nb b b b R∈ . Then their dot 

product will be denoted by: 

1 1 2 2, ... n na b a b a b a b= + + + . 

Euclidean distance between both points is: 

( ),a bρ ( ) ( ) ( )22 2
1 1 2 2 ... n na b a b a b= − + − + + − . 

Euclidean norm a  of point a  is 

1 2 2 22
1 2, ... na a a a a a= = + + + . 

The next equality is valid 

( ),a b a bρ− = . 
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Let the nonempty sets , nA B R⊂ . The Euclidean distance 

between both sets is: 

( ) ( ){ }{ }, inf inf , , ,E A B a b a A b Bρ ρ= ∈ ∈ . 

If at least one of the sets A  and B  is empty, then for the 

convenience, we will consider that ( ), 0E A Bρ = . Further, by 

A∂  and A  are denoted the contour and closure of set A , 
respectively. 

Remark 1. The next properties are valid for the Euclidean 
distance between the sets in nR . Let the sets , , ,A B C  

nD R⊂  and constant Rλ ∈ . Then: 

1. ( )0 , ;E A Bρ≤ < ∞  

2. If ( ), 0;EA B A Bρ∩ ≠ ∅ ⇒ =  

3. ( ) { } { }( ), 0 , :E n nA B a A b Bρ = ⇔ ∃ ⊂ ∃ ⊂  ( )lim , 0;
n n

n
a bρ

→∞
=  

4. If ( ), 0E A Bρ =  and ,A B  are bounded ;A B⇒ ∩ ≠ ∅  

5. If ( ), 0;
E

A B A Bρ∩ ≠ ∅⇒ =  

6. ( ) ( ), , ;E EA B A Bρ ρ=  

7. ( ) ( ), , ;E EA B B Aρ ρ=  

8. ( ) ( ). , . . , ;E EA B A Bρ λ λ λ ρ=  

9. If A B∅ ≠ ⊂  and C D∅ ≠ ⊂  

( ) ( ), , ;E EA C B Dρ ρ⇒ ≥  

10. If set A  is bounded and ( ),E A Bρ < ∞ , then set B  

is also bounded. 

Theorem 1. Suppose that the nonempty sets 1 2, ,..., ,
k

A A A  

1 2, ,...., n

sB B B R⊂ . 

then 

( )1,...,k 1,...,s
,

E p qp q
A Bρ

= =U U

( ){ }min , ; 1,2,..., k, 1, 2,...,sE p qA B p qρ≤ = = . 

Proof. Since 

( )
1,...,k

1,2,..., i pp
i k A A

=
∀ = ⇒ ⊂U  

and 

( )1, 2,...,sj∀ =
1,...,sj qq

B B
=

⇒ ⊂U , 

then using property 9 of the previous remark, we obtain 

( )1,...,k 1,...,s
,

E p qp q
A Bρ

= =U U

( ), , 1, 2,..., , 1, 2,...,E i jA B i k j sρ≤ = = . 

From the inequalities above, the Theorem 1 is true. 

Let the functions *, : ng g R R+ →  and the constants 

0 1, ,T T  * *
0 1,T T R+∈ . We introduce the parametric curves: 

[ ] ( ){ }0 1 0 1
0 1

0 1

; , ;
,

,

g t T t T T T
T T

T T
γ

 ≤ ≤ ≤= 
∅ >

 

and 

( ){ }* * * * *
0 1 0 1* * *

0 1
* *

0 1

; , ;
,

, .

g t T t T T T
T T

T T

γ
 ≤ ≤ ≤  =  
∅ >

 

Similarly, we introduce the curves: 

( ] [ ) ( )0 1 0 1 0 1, , , , , ,T T T T T Tγ γ γ  

( ) ( )* * * * * * * * *
0 1 0 1 0 1, , , , , ,T T T T T Tγ γ γ 

   

defined in the half open and open intervals, respectively. 

Remark 2. Let 0 10 T T≤ ≤  and * *
0 10 T T≤ ≤ . The following 

definitional equations, relating to the Euclidean distance 

between the curves 
* * *

0 1,T Tγ  
   and [ ]0 1,T Tγ , and the 

uniform distance between the curves [ ]*
0 1,T Tγ  and 

[ ]0 1,T Tγ , are valid respectively: 

[ ]( )* * *
0 1 0 1, , ,E T T T Tρ γ γ  

( ) ( )( ){ }{ * * * * *
0 1inf inf , , ,g t g t T t Tρ= ≤ ≤ }0 ;T t T≤ ≤  

[ ] [ ]( )*
0 1 0 1, , ,R T T T Tρ γ γ ( ) ( )( ){ }*

0 1sup ,g ,g t t T t Tρ= ≤ ≤

( ) ( ){ }*
0 1sup g ,g t t T t T= − ≤ ≤

. 

As seen from the remark above, the uniform distance is 
defined only when the curves have a common definitional 
interval. Similar definitional equations for the Euclidean and 
uniform distance between the curves are valid when they are 
defined in the half-open and open intervals. In the next two 
theorems, we will use the notations: 

{ }min *
0 0 0min ,T T T= , { }max *

0 0 0max ,T T T= , 

{ }min *
1 1 1min ,T T T= , { }max *

1 1 1max ,T T T= . 

Theorem 2. Suppose that 

1. The functions 
*, , ng g C R R+ ∈   . 

2. The inequality max min
0 1T T≤  is satisfied. 

Then the following estimate valid 

[ ]( )* * *
0 1 0 1, , ,E T T T Tρ γ γ  

( )* max min max min
0 1 0 1, , ,R T T T Tρ γ γ   ≤     . 

Proof. The statement follows from Remark 1 and Remark 2. 
Actually we have 
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[ ]( )* * *
0 1 0 1, , ,E T T T Tρ γ γ  

( * min max * max min * min max
0 0 0 1 1 1, , , ,E T T T T T Tρ γ γ γ     = ∪ ∪       

)min max max min min max
0 0 0 1 1 1, , ,T T T T T Tγ γ γ     ∪ ∪     

( )* max min max min
0 1 0 1, , ,E T T T Tρ γ γ   ≤    

( ) ( )( ){ }{ * * max * min
0 1inf inf , , ,g t g t T t Tρ= ≤ ≤

}max min
0 1T t T≤ ≤ ( ) ( )( ){ }* max min

0 1inf , ,g t g t T t Tρ≤ ≤ ≤

( ) ( )( ){ }* max min
0 1sup , ,g t g t T t Tρ≤ ≤ ≤

( )* max min max min
0 1 0 1, , ,R T T T Tρ γ γ   =     . 

The Theorem is proved. 
The next theorem enhances the previous. 
Theorem 3. Suppose that: 

1.The functions *, : ng g R R+ →  and they are continuous 

on the left hand side in R+ . 

2.The inequality max min
0 1T T≤  is satisfied. 

Then the following estimate is valid: 

( ( ]( )* * *
0 1 0 1, , ,E T T T Tρ γ γ

( (( ){ * max min max min
0 1 0 1min , , , ,

R
T T T Tρ γ γ ≤    

( ) (( )* * *
0 0 0g 0 , , ,E T T Tρ γ +  ( ) (( )* *

0 0 0g 0 , , ,E T T Tρ γ + 

( ) (( )* *
1 1 1g , , ,E T T Tρ γ  ( ) (( )}* * *

1 1 1g , ,
E

T T Tρ γ  . 

Proof. We will prove the statement of theorem under the 
additional assumption that the next inequalities are valid: 

*
0 0T T≤  and *

1 1T T≤ . 

The other three cases are considered similarly. It is clear 
that in this case the intervals 

*
0 0T t T≤ < = ∅  and *

1 1T t T< ≤ = ∅ . 

Therefore 

( ) (( )* * *
0 0 0g 0 , ,E T T Tρ γ +  ( )( )* *

0g 0 , 0E Tρ= + ∅ =   (1) 

and 

( ) (( ) ( )( )* *
1 1 1 1g , , g , 0E ET T T Tρ γ ρ = ∅ = .    (2) 

Taking into account that function g  is continuous on the 

left hand side at a point 0T , we deduce that 

( ] ( ) ( ]0 1 0 0 1, 0 ,T T g T T Tγ γ= + ∪ . 

Analogously 

( ( ) (* * * * * * * *
0 1 0 0 1, 0 ,T T g T T Tγ γ = + ∪  . 

We apply property 6 of Remark 1 and we derive 

( ( ]( )* * *
0 1 0 1, , ,E T T T Tρ γ γ ( ( ]( )* * *

0 1 0 1, , ,E T T T Tρ γ γ= 

( ) (( * * * * *
0 0 10 , ,E g T T Tρ γ = + ∪  ( ) ( ])0 0 10 ,g T T Tγ+ ∪

( ) ( ( ( )( * * * * * * *
0 0 0 0 1 10 , , ,E g T T T T T g Tρ γ γ = + ∪ ∪ ∪   

( ) ( ( ( ))* *
0 0 1 1 1 10 , ,g T T T T T g Tγ γ + ∪ ∪ ∪  . 

Using Theorem 1, by the equality above, we receive: 

( ( ]( )* * *
0 1 0 1, , ,E T T T Tρ γ γ ( ( )( ){ * *

0 0 0min , , 0 ,
E

T T g Tρ γ ≤ +  

( (( )* * *
0 1 0 1, , , ,E T T T Tρ γ γ   ( ) (( )}* * *

1 1 1, , ,
E

g T T Tρ γ   

from where, as we get into account (1) and (2), we find: 

( ( ]( )* * *
0 1 0 1, , ,E T T T Tρ γ γ ( ( )( ){ * *

0 0 0min , , 0 ,
E

T T g Tρ γ ≤ +  

( (( )* * *
0 1 0 1, , , ,R T T T Tρ γ γ   ( ) (( )* * *

1 1 1, , ,E g T T Tρ γ 

( ) (( )* * *
0 0 0g 0 , , ,E T T Tρ γ +  ( ) (( )}* *

1 1 1g , ,
E

T T Tρ γ  . 

The Theorem 3 is proved. 
Similarly we prove the statement: 
Theorem 4. Suppose that: 

1. The functions *, : ng g R R+ →  are continuous on the 

right hand side in R+ . 

2. The inequality max min
0 1T T≤  is satisfied. 

Then the next estimate is valid: 

) [ )( )* * *
0 1 0 1, , ,E T T T Tρ γ γ

) )( ){ * max min max min
0 1 0 1min , , , ,

R
T T T Tρ γ γ ≤    

( ) )( )* * *
0 0 0g , , ,E T T Tρ γ  ( ) )( )* *

0 0 0g , , ,E T T Tρ γ 

( ) )( )* *
1 1 1g 0 , , ,E T T Tρ γ −  ( ) )( ) }* * *

1 1 1g 0 , ,
E

T T Tρ γ −  . 

As a consequence of the theorem above, we will formulate 
the following statement relating to the Euclidean distance 
between continuous curves. 

Theorem 5. Suppose that: 

1. The functions 
*, , n

g g C R R
+ ∈   . 

2. The inequality max min
0 1T T≤  is satisfied. 

Then the next estimate is valid: 

[ ]( )* * *
0 1 0 1, , ,E T T T Tρ γ γ   ( ( ]( )* * *

0 1 0, , ,E T T T Tρ γ γ= 

) [ )( )* * *
0 1 0, , ,E T T T Tρ γ γ=  ( ) ( )( )* * *

0 1 0, , ,E T T T Tρ γ γ=
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( ){ * max min max min
0 1 0 1min , , , ,

R
T T T Tρ γ γ   ≤      

( )( )* *
0 0 0g , , ,E T T Tρ γ    ( )( )* * *

0 0 0g , , ,E T T Tρ γ   

( )( )* *
1 1 1g , , ,E T T Tρ γ    ( )( ) }* * *

1 1 1g , ,
E

T T Tρ γ    . 

The following theorem summarizes Theorem 3 and 
Theorem 4. 

Theorem 6. Suppose that: 

1. The functions *, : ng g R R+ → . 

2. There exists a number k N∈ , such that the following 
inequalities are satisfied: 

* * *
0 10 ... ;kT T T< < < <  

0 10 ... ;
k

T T T< < < <  

max min max min max
0 1 1 2 20 ...T T T T T< < ≤ < ≤ < min max ,k kT T< ≤  

where 

{ } { }min * max *
0 0 0 0 0 0min ,T , max ,T ,...,T T T T= =  

{ } { }min * max *min ,T , max ,Tk k k k k kT T T T= = . 

Then: 

1. If the functions g  and *g  are continuous on the left 

hand side in R+ , then the next inequality is valid: 

( ( ]( )* * *
0 0, , ,E k kT T T Tρ γ γ

( (( ){ * max min max min
1 1min , , , ,

R i i i i
T T T Tρ γ γ− − ≤    

( ) (( )* *
1 1 1g 0 , , ,E i i iT T Tρ γ− − − +  ( ) (( )* * *

1 1 1g 0 , , ,E i i iT T Tρ γ− − − + 

( ) (( )* *g , , ,E i i iT T Tρ γ 

( ) (( ) }* * *g , , , 1,2,...,
E i i i

T T T i kρ γ  = . 

2. If the functions g  and *g  are continuous on the right 

hand side in R+ , then the next inequality is valid: 

) [ )( )* * *
0 0, , ,E k kT T T Tρ γ γ

) )( ){ * max min max min
1 1min , , , ,

R i i i i
T T T Tρ γ γ− − ≤    

( ) )( )* *
1 1 1g , , ,E i i iT T Tρ γ− − − ( ) )( )* * *

1 1 1g , , ,E i i iT T Tρ γ− − −

( ) )( )* *g 0 , , ,E i i iT T Tρ γ − 

( ) )( ) }* * *g 0 , , , 1, 2,...,
E i i i

T T T i kρ γ − = . 

Definiton 1.If 

1. The functions *, : ng g R R+ → . 

2. The function ( ) [ ]( )* * *
0 0 0 0; , , , ,EG t T T T t T tρ γ γ =   , 

where *
0, ,t T 0T R+∈ . 

We will say that the functions g  and *g  are: 

1. Euclidean equivalent if 

( ) ( )* *
0 0 0 0, :lim ; , 0

t
T T R G t T T+

→∞
∃ ∈ = . 

In this case, we denote *g g� . 

2. Uniformly Euclidean equivalent if  

( ) ( )* * *
0 0 0 0 0 0, : ,R T T+∃∆ ∆ ∈ ∀ ≥ ∆ ∀ ≥ ∆

( )*
0 0lim ; , 0.

t
G t T T

→∞
⇒ =  

The notation in this case is *g g≈ . 

Remark 3. Let { }* max
0 0 0 1 2max ,T T T t t= ≤ < . Then 

( )*
2 0 0; ,G t T T [ ]( )* *

0 2 0 2, , ,E T t T tρ γ γ =  

[ ] [ ] [ ]( )* * *
0 1 1 2 0 1 1 2, , , , ,E T t t t T t t tρ γ γ γ γ = ∪ ∪ 

[ ]( )* *
0 1 0 1, , ,E T t T tρ γ γ ≤   ( )*

1 0 0; , ,G t T T=  

i.e. function G  is monotonically decreasing for max
0t T≥ . 

Furthermore, ( )*
1 0 0; , 0G t T T ≥ . Consequently, the limit 

( )*
0 0lim ; ,

t
G t T T

→∞
 always exists. 

Remark 4. It is clear that if two functions are uniformly 
Euclidean equivalent, then they are Euclidean equivalent. The 
opposite is not true. Indeed, if there exists a constant 

{ }*
1 0 0max ,T T T>  such that: 

( )
1

*
0 0

0
lim ; , 0

t T
G t T T

→ −
=  and ( )1 1lim ; , 0,

t
G t T T const

→∞
= >  

then: 
1. From the first equality, it follows that 

( )*
0 0lim ; , 0,

t
G t T T

→∞
=  

i.e. the functions are Euclidean equivalent; 
2. By the second inequality, it follows that 

( )*
01 1 01 1,T T T T∀ ≥ ∀ ≥

( ) ( )*
01 01 1 1lim ; , lim ; , 0,

t t
G t T T G t T T const

→∞ →∞
⇒ ≥ = >  

i.e. the functions are not uniformly Euclidean equivalent. 
3. Main Results 
The following initial value problem of impulsive 

differential equations is an object of investigation in the paper: 

( ) 1, , ;i i

dx
f t x t t t

dt
−= < ≤           (3) 

( ) ( ) ( )( )0 , 1,2,...;i i i ix t x t I x t i+ = + =      (4) 
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( )0 0 ,x t x=                 (5) 

where: 

� Function : nf R D R+ × → ; 

� D  is a nonempty domain in nR ; 

� The impulsive functions ( ): , : ,n

i iI D R Id I D D→ + →  

i = 1, 2,... ; 

� Id  is an identity in nR ; 

� An initial point ( )0 0,t x R D+∈ × ; 

� The moments 1 2 0 1 2, ,..., ...t t t t t< < < , are named 

impulsive. 

The solution ( )0 0; ,x t t x  of problem (3), (4), (5), we define 

as follows: 

1.1. For 0 1t t t≤ ≤ , the solution of the considered problem 

coincides with the solution of problem without impulses 

( ) ( )0 0, , .
dx

f t x x t x
dt

= =  

We introduce the notation ( )1 1 0 0; ,x x t t x= . 

1.2. At the moment 1t , the impulsive effects satisfying the 

equality below takes place: 

( ) ( ) ( )( )1 0 0 1 0 0 1 1 0 00; , ; , ; ,x t t x x t t x I x t t x+ = +

( )1 1 1 1 ;x I x x+= + =  

2.1. For 1 2t t t< ≤ , the solution of problem (3), (4), (5) 

coincides with the solution of problem without impulses 

( ) ( )1 1, , .
dx

f t x x t x
dt

+= =  

We denote by ( )2 2 0 0; ,x x t t x= . 

2.2. At the moment 2t , the impulsive effects is performed: 

( ) ( ) ( )( )2 0 0 2 0 0 2 2 0 00; , ; , ; ,x t t x x t t x I x t t x+ = +

( )2 1 2 2x I x x+= + =  

etc. 
It is clear that the solution is a piecewise continuous 

function with breakpoints 1 2, ,...t t , in which the solution is 

continuous on the left hand side. Further, we will use the 
notations: 

( )0 0; , ;i ix x t t x=  

( ) ( )( ) ( ) ( )0 0 0 0; , ; , , 1, 2,...i i i i i ix x t t x I x t t x Id I x i
+ = + = + = . 

Along with the main problem, we consider also the 
perturbed problem: 

( ) * *
1, , ;i i

dx
f t x t t t

dt
−= < ≤             (6) 

( ) ( ) ( )( )* * *0 , 1, 2,...;i i i ix t x t I x t i+ = + =      (7) 

( )* *
0 0 ,x t x=                  (8) 

where the initial point is ( )* *
0 0,t x R D

+∈ ×  and the impulsive 

moments are * * * * *
1 2 0 1 2, ,..., ...t t t t t< < < . The solution of the 

perturbed problem is denoted by ( )* * *
0 0; ,x t t x . 

Let the constants * *
1 2 1 2, , ,T T T T R+∈  and * *

1 2 1 2,T T T T< < . 

By ( ]1 2,T Tχ  is denoted the trajectory of problem (3), (4), (5), 

defined for 1 2T t T< ≤ . Analogously, by (* * *
1 2,T Tχ 

  is 

denoted the trajectory of problem (6), (7), (8), locked in 
* *

1 2T t T< ≤ . The following equalities are valid: 

( ] ( ){ }0 0 1 2 1 2
1 2

1 2

; , ; , ;
,

,

x t t x T t T T T
T T

T T
χ

 < ≤ <= 
∅ ≥

 

and 

( ( ){ }* * * * * * *
0 0 1 2 1 2* * *

1 2
* *

1 2

; , ; , ;
,

, .

x t t x T t T T T
T T

T T

χ
 < ≤ < = 
∅ ≥

 

We denote 

{ }min *min ,i i it t t=  and { }max *max ,i i it t t= , 0,1,2,...i = . 

Definiton 2. We will say that the solution of the main 
problem (3), (4), (5) is (uniformly) orbital Euclidean stable on 

the initial point ( )0 0,t x  and the impulsive moments 1 2, ,...t t , 

if: 

( )( )0 1 0 1, ,... , ... :t t t t xR const Rδ δ δ δ δ+ +∃ ∈ + + < ∞ ∃ = ∈  

( )( )* * * *
0 0 0 0 0 0 0, , ,t xt x R D t t x xδ δ+∀ ∈ × − < − <  

( )* * *
1 2, ,..., , 1, 2,...i i tit t t t iδ∀ − < = ⇒  

( ) ( )* * *
0 0 0 0; , ; , ,x t t x x t t x≈  

i.e. the solutions ( )0 0; ,x t t x  and ( )* * *
0 0; ,x t t x  are (uniformly) 

Euclidean equivalents. 
The main purpose of this study is to find the sufficient 

conditions which guarantee the property uniformly orbital 
Euclidean stability of the solutions of the considered equations. 
Further we will refer to the problem 

( ) ( )0 0, ,
dx

f t x x t x
dt

= = .          (9) 

The solution of this problem is denoted by ( )0 0; ,t t xχ . 

Definiton 3. We will say that the solutions of system (9) are 
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uniformly Lipschitz stable with a positive Lipschitz constant 

LC , if 

( )0 :L constδ∃ = >  

( ) ( )' '' ' ''
0 0 0 0 0, , Lt R x x D x x δ+∀ ∈ ∀ ∈ − <

( ) ( )' '' ' ''
0 0 0 0 0 0 0; , ; , , .Lt t x t t x C x x t tχ χ⇒ − < − ≥  

The uniform Lipschitz stability was introduced in 1986 by F. 
Dannan and S. Elaydi in [6]. 

We will use the following conditions: 

H1.For every point ( )0 0,t x R D+∈ × , the solution of 

problem (9) exists and is unique for 0t t≥ . The solution is 

Lipschitz stable with Lipschitz constant LC . 

H2.There exists a positive constant fC  such that 

( )( ) ( ), , ft x R D f t x C
+∀ ∈ × ⇒ ≤ . 

H3.There exists a positive constant t
C  such that 1i i

t t −−  

,
t

C≥  1, 2,...i = . 

H4.The impulsive functions 1 2, ,...I I  are equal Lipschitz, 

i.e. there exists a positive constant IC  such that 

( ) ( ) ( )', '' ' '' ' '' , 1, 2,...i i Ix x D I x I x C x x i∀ ∈ ⇒ − ≤ − = . 

Theorem 7. Let the conditions H1-H4 be valid. 

If 1
L I

C C < , then the solution of problem (3), (4), (5) is 

uniformly orbital Euclidean stable. 

Proof. From condition H3, it follows that lim i
i

t
→∞

= ∞  is 

fulfilled. We assume that: 

* ,i i tit t δ− <               (10) 

where 0 ,
ti t

Cδ< <  0,1,2,...i = , 0 1 ...
t t

δ δ+ + < ∞  and 

*
0 0 0 ,xx x δ− <             (11) 

where 0 0
x

δ > . 

Using condition H3 and inequality (10) it follows 

max min
1 , 1, 2,...i it t i− < = . 

For convenience, we divide the proof into several parts. 
Part 1.We will evaluate the norm of difference 

( )* max * *
0 0 0; ,x t t x  ( )max

0 0 0; ,x t t x− . For this purpose, we will 

suppose that * max
0 0 0t t t≤ = . The other case is considered 

similarly. Given all of (10), (11) and condition H2, we get 

( ) ( )* max * * max
0 0 0 0 0 0; , ; ,x t t x x t t x−  

( ) ( )* max * *
0 0 0 0 0 0; , ; ,x t t x x t t x≤ −  

( ) ( )max
0 0 0 0 0 0; , ; ,x t t x x t t x+ −  

( )( )
*
0

0

*
0 0 0 0, ; ,

t

t
x x f x t x dτ τ τ≤ − + ∫  

*
0 0 0 0 0 .x f x f tC t t Cδ δ δ≤ + − ≤ +  

Part 2. We will estimate the norm of difference 

( )* min * *
1 0 0; ,x t t x  ( )min

1 0 0; ,x t t x− . Without limitation, we can 

assume that, 0 0x f t LCδ δ δ+ < , where the constant L
δ  

satisfies Definition 3. Then from Part 1 we get 

( ) ( )* max * * max
0 0 0 0 0 0; , ; , Lx t t x x t t x δ− < . 

Finally, from condition H1 we have 

( ) ( )* min * * min
1 0 0 1 0 0; , ; ,x t t x x t t x−

( )( ) ( )( )* min max * max * * min max max
1 0 0 0 0 1 0 0 0 0; , ; , ; , ; ,x t t x t t x x t t x t t x≤ −

( ) ( )* max * * max
0 0 0 0 0 0; , ; ,LC x t t x x t t x≤ − 0 0 .L x L f tC C Cδ δ≤ +  

Part 3.We will evaluate the difference ( )* * * *
1 0 0; ,x t t x  

( )1 0 0; ,x t t x− . Assume that the inequality min *
1 1 1t t t= ≤ max

1t=  

is valid. Then 

( ) ( )* * * *
1 0 0 1 0 0; , ; ,x t t x x t t x−

( ) ( ) ( ) ( )* * * * * *
1 0 0 1 0 0 1 0 0 1 0 0; , ; , ; , ; ,x t t x x t t x x t t x x t t x≤ − + −

( )0 01L x f L tC C Cδ δ≤ + + . 

Part 4.We will estimate the norm of difference 

( )* * * * *
1 1 1 0 00; ,x x x t t x

+ +− = + ( )1 0 00; ,x t t x− + . 

Let as in the previous part of the proof, we assume that 
* max
1 1 1t t t≤ = . The consideration in the other case are similar. 

We consistently find 

( ) ( )* * * * *
1 1 1 0 0 1 0 00; , 0; ,x x x t t x x t t x+ +− = + − +  

( ) ( )( )* * * * * * * *
1 0 0 1 1 0 0; , ; ,x t t x I x t t x= +  

( ) ( )( )1 0 0 1 1 0 0; , ; ,x t t x I x t t x− − ( ) ( )* * * *
1 0 0 1 0 0; , ; ,x t t x x t t x≤ −  

( )( ) ( )( )* * * *
1 1 0 0 1 1 0 0; , ; ,I x t t x I x t t x+ −  

( )
0 0

1f L

I L x I L t

L

C C
C C C C

C
δ δ

+
≤ + 0 0 ,x tq qδ δ= + ∆  

where I Lq C C=  and 
( )1

f L

L

C C

C

+
∆ = . 
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Part 5.Let 1 0 0x x t
q qδ δ δ= + ∆ . By repeating the reasoning 

of the previous four parts of the proof we reach the estimate 

( )* 2 2
2 2 1 1 0 0 1x t x t t

x x q q q q qδ δ δ δ δ+ +− ≤ + ∆ = + ∆ + . 

Similarly, for each number k , we obtain 

( )( )* 1
0 0 1 1

... , 1, 2,...k k k

k k x t t t k
x x q q q q kδ δ δ δ+ + −

−− ≤ + ∆ + + + = . 

Part 6.For each *
0 0,t t R+∈ , we have 

( )*
0 0lim , ,

t
G t t t

→∞
[ ]( )* *

0 0lim , , ,E
t

t t t tρ χ χ
→∞

 =  
*lim k k

k
x x+ +

→∞
≤ −  

( )( )1
0 0 1 1
. lim .lim ...k k k

x t t t k
k k

q q q qδ δ δ δ−
−→∞ →∞

≤ + ∆ + + +  

( )( )1
0 1. lim ...k k s

t t t k s
k

q q qδ δ δ−
−→∞

= ∆ + + +
  

( ) ( ) ( )( )1 2
1 2 1...s s

t k s t k s t k
q q qδ δ δ− −

− + − + −
+ + + +
  

( ) ( )( )0 1. lim 1 ... ...s k s

t t t k s
k

q q q δ δ δ−
−→∞

≤ ∆ + + + + + +
  

( )1 2 ...s sq q q− −+ + + + ×  

( ) ( ) ( ){ }max ; 1 , 2 ,..., 1ti i k s k s kδ × = − + − + −   

( )( )0 1. lim ...
1

s

t t t k s
k

q

q
δ δ δ −→∞

≤ ∆ + + +
−

 

( ) ( ) ( ){ }lim max ; 1 , 2 ,..., 1
1

ti
k

i k s k s k
q

δ
→∞

∆
+ = − + − + − −  

( ) ( ){ }sup ; 1 , 2 ,...
1 1

s t

ti
q i k s k s

q q

δ δ∆ ∆≤ + = − + − +
− − . (12) 

Let ε  be an arbitrary positive constant. Since the constant 
q  satisfies the inequalities 0 1q< < , then it is clear that 

( )( ) ( )1 1 1:
1 2

s ts s N s s q
q

δ εε ∆
∃ = ∈ ∀ ≥ ⇒ <

−
.   (13) 

We fix 1s s= . Since the series 1 2 ...
t t

δ δ+ +  is convergent, 

then it is fulfilled 

( )1 1 1, :k N k s∃ ∈ >  

( )1 1
1 2

tii k s k
q

ε∆∀ > − ⇒ <
−

( ) ( ){ }1 1 1 1sup ; 1 , 2 ,...
1 2

ti i k s k s
q

εδ∆⇔ = − + − + <
−

. (14) 

By (12), (13) and (14), it follows that for every *
0 0,t t R+∈ , 

it is satisfied 

( ) ( )* *
0 0 0 0lim , , lim , , 0.

t t
G t t t G t t tε

→∞ →∞
< ⇔ =  

It means that the solution of problem (3), (4), (5) is 
uniformly orbital Euclidean stable. 

The Theorem 7 is proved. 
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