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1. Introduction 

Krylov-Bogoliubov-Mitroplshkii (KBM) [1-3] method is 

widely used techniques to obtain approximate solutions of 

weakly nonlinear system. The method was originally de-

veloped for approximating periodic solutions of second 

order nonlinear differential systems was letter extended by 

Popov [4] to damped oscillatory nonlinear systems. Murty, 

Dekshatulu and Krisna [5] extended the method to over-

damped nonlinear system. Recently Shamsul [6] has pre-

sented a unified method for solving an n-th order differen-

tial equation (autonomous) characterized by oscillatory, 

damped oscillatory and non-oscillatory processes with con-

stant coefficients. In another recent article, Shamsul 

[7],Pinakee, et,al [7,8] investigated over-damped nonlinear 

systems and found approximate solutions of Duffing’s equ-

ation when one root of the unperturbed equation was 

double of the other.  The aim of this article is to find an 

approximate solution of over-damped nonlinear differential 

systems based on the extended KBM (by Popov [4]) me-

thod in which one of the eigen-values is almost equal to the 

other eigen-value.  

2. Materials and Method 

Consider a nonlinear system governed by the differential 

equation,  

1 2
( , )x k x k x f x xε+ + = −ɺɺ ɺ ɺ ,               (1)  

Where the over-dots denote differentiation with respect 

to t, 
1

k  and 
2

k  are constants, ε  is a small parameter, f  is 

the given nonlinear function. When 0ε =  (1) has two roots, 

say 
1

λ  and 
2

λ . Therefore, the solution of the unperturbed 

equation of (1) become 
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t t e e

x t a e e b
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 −= + +  − 

,         (2)  

Where 0a  and 0b  are arbitrary constant. We choose an 

approximate solution of (1) in the form of the asymptotic 

expansion   
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1 2 2
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t t
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 −= + + + + − 
 (3) 

Where a and b satisfy the differential equations 

2 3

1 2

2 3

1 2

( , , ) ( , , ) ...,

( , , ) ( , , ) ....,

a A a b t A a b t

b B a b t B a b t

ε ε ε
ε ε ε

= + +

= + +

ɺ

ɺ
             (4) 

Herein solution (3) together with (4) is not considered in 

a usual form of the classical KBM method. But this solu-

tion was early introduced by Murty and Deekshatulu [5] to 

investigate an over-damped case of equation (1). Now it is 

being used to investigate various oscillatory and non-

oscillatory problems (see [6-9] for details). 

Differentiating ( , )x t ε  twice with respect to t, substitut-

ing the derivatives, ,x xɺ ɺɺ  and  ( , )x t ε  in the original equa-

tion (1) and equating the coefficient of ε , we obtain 
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∂ ∂  + + − − = −  ∂ ∂  

                           (5)

where 
(0)

0 0( , )f f x x= ɺ  and  
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In general 
(0)

f  be expanded in power of 
1 2

1 2

t te eλ λ

λ λ
 −
 − 

 as; 
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…

(6) 

Substitute the expansions of 
(0)

f  from (6) into (5) and 

equation the coefficients of    
1 2 1 2

0 1

1 2 1 2

,
t t t t

e e e e
λ λ λ λ

λ λ λ λ
   − −
   − −   

and higher order terms of 
1 2
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t t
e e

λ λ

λ λ
 −
 − 

, we obtain  
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 (7) 
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∂ −
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and  

1 2
2
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 (9) 

The particular solution of (7)-(9) gives three unknown 

functions 
1 2
,A B and

1
u , which complete the determination 

of the first order solution of (1).  

Example: Let us consider a Duffing equation with a large 

linear damping, 

2 32x kx x xω ε+ + = −ɺɺ ɺ ,                                 (10) 

Here
1 2

2kλ λ+ = −  and 
2

1 2λ λ ω= .  

The function 
(0)

f  becomes, 
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Therefore, the nonzero coefficients of 0,1,2
r

g r = … are

1 2

3
3

0 ( )
8
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λ λ= + , 1 2
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( )
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t ta b
g e eλ λ= + , 
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2

2
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( )

4

t tab
g e eλ λ= + , 

3

3g b= . Substituting the values of  

1g  in to (8) and the values of 2 3,g g  into (9) and solving 

them, we obtain 
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and  
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                                   (12) 

Now substituting the values of 
0

g  and the values of 
1

B  from (11) into (7) and simplifying,  

we obtain 
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1 2 1 2 1 2
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It is noted that (13) has not always an exact solution. It 

has an exact solution when 
1 2

λ λ= . However, we can find 

an approximate solution of (13) when 
2

1 2( )λ λ ε− ≤ . We 

neglect the last term of (13), since 1 22 2

2 1

t t
e e

λ λλ λ−  is order 

of  
1 2

λ λ− . Therefore, we rewrite (13) as: 

1 2 1 2

2
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       (14)

Equation (14) has again not an exact solution unless  

1 2λ λ= . Now we can start with the following equation and 

a trial solution as: 
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 (15) 

and 1 1 2 22 ( ) 2

1 1 2 3

t t t
A l e l e l e

λ λ λ λ+= + +  where 
1 2 3
, ,l l l  and h  are 

unknown. Substituting  
1

A  into (15) and equating the coef-

ficients of 1 23 3
,

t t
e e

λ λ
… , we obtain a set of algebraic equa-

tions, whose solutions are 
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Now we should investigate the value of  h . It is obvious that as 

1 2λ λ→ , 3h → .When 1 2λ λ≠ , we obtain 

2

1 2

1 2 2 1

12( )
3

(3 )(3 )
h

λ λ
λ λ λ λ
− −

− =
− −

                         (17) 

Therefore, we neglect the right hand side of (17) when 
2

1 2( )λ λ ε− ≤ . Thus an approximate solution of (14) or (13) 

is 

1 21 2(2 )2 22

1 2
1
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2( )6
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                 (18)

Now substituting the values of 1A from (18) and 1B  from (11) into (4) and then integrating with respect to t  by assuming 

that  a  and b  are constant in the right sides of (4), we obtain 

1 1 2 22 2 ( ) 2
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0 0
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6 1 2( 1) 1
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Hence the first order solution of (10) is  

1 2

1 2

0 0 1

1 2
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( , ) ( ) ( , , )

2

t t
t t e e

x t a e e b u a b t
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λ λε ε
λ λ

 −= + + + − 
    (20) 

where a  and b  are given by (19) and 1u  is given by (12). 

Discussion of Murty’s Unified theory: Murty found a 

unified solution (for un-damped, under damped and over 

damped case of (1) in the form 

1( , ) cosh ( , ) ...x t uε ρ ψ ε ρ ψ= + +            (21) 

or 

1( , ) sinh ( , ) ...x t uε ρ ψ ε ρ ψ= + +             (22) 

where ρ and ψ  satisfy the first order differential equa-

tions 

1

0 1

( ) ..
.

( ) ...

k A

B

ρ ρ ε ρ
ψ ω ε ρ

= − + + 
= + + 

ɺ

ɺ
                        (23) 

It is interesting to note tnat such type of unified solutions 

can be found from (5). In this paper, we obtain a solution 

of (10) in the form of (21). We rewrite (3) as 

1 2

1( , ) ( ) ( ) ( , , ) ...
t t

x t a t e b t e u a b t
λ λε ε= + + +    (24) 
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where a and b  satisfy the first order differential equations 

1

1

( , , )) ..
.

( , , )) ...

a A a b t

b B a b t

ε
ε

= + 


= + 

ɶɺ

ɺ ɶ
                             (25) 

By comparing (3) and (24), we obtain 

1 2

( ) ( )
( )

2

t t
a t

α β
λ λ

= +
−

,  
1 2

( ) ( )
( )

2

t t
b t

α β
λ λ

= −
−

 (26) 

Differentiating (26) with respect to t  and utilizing rela-

tions of (4) and (25), the following relations between 

1 1
,A B and 

1 1,A Bɶ ɶ  can be found: 

1 1

1

1 2
2

A B
A

λ λ
= +

−
ɶ , 1 1

1

1 2
2

A B
B

λ λ
= −

−
ɶ         (27) 

or, 

1 1 1A A B= +ɶ ɶ , 
1 1 2 1

1
( )( )

2
B A Bλ λ= − +ɶ ɶ        (28) 

Substituting the values of 
1

A  and 
1

B  from (28) into (5) and 

simplifying, we obtain 

1 2 (0)1 1
1 2 1 2 1 1 1 2 1( ) ( )

t tA B
A e A e u f

t t t t

λ λλ λ λ λ λ λ
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ɶ ɶ
ɶ ɶ                    (29)

According to then unified theory, the roots of the linear 

equation of (10) are 1 0kλ ω= − +  and 2 0kλ ω= − − , so that 

0 0 0 03 3(00 3 3 2 2 3
( 3 3 ).

t t t tkt
f e a e a be ab e b e

ω ω ω ω− −−= + + + Moreo-

ver, in accordance to KBM method, 1u  does not contain 

terms with 0t
e

ω
and 0t

e
ω−

. Substituting the values of  1 2,λ λ
and 

(0)
f into (29) and assuming that 1u  excludes the terms 

with 0t
e

ω
and 0t

e
ω−

, we obtain 

2 21
0 12 3 ktA
A a be

t
ω − ∂
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ɶ
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2 21
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ɶ
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and  

0 033 3 3

0 0 1 ( )
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k k u e a e b e
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  (32) 

Solving (30)-(32), we obtain 
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B
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−

=
+
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and  

0 03 33 3 3

1
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u

k k k k

ω ω

ω ω ω ω

−−  
= − + − − + + 

 (34) 

Substituting the values of 
1Aɶ  and 

1Bɶ  from (33) into (25), 

we obtain 

2 2

0

3

2( )

kta be
a

k

ε
ω

−

=
−

ɺ ,      
2 2

0

3

2( )

ktab e
b

k

ε
ω

−

=
+
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Equations of (35) have exact solutions. These equations 

reduce to  

3 2

2

3

8

ktkr e
r

ε
ω

−

=ɺ ,      
2 2

0

2

3

8

ktr eεωφ
ω

−

=ɺ       (36) 

under the transformations 
1

2
a reφ= , 

1

2
b re φ−= . 1u  in 

(34) become 

( )3 3 2 2

0

1 2 2 2

0

( 2 ) cosh 3( ) 3 sinh 3( )

16 ( 4 )

ktr e k t k t
u

k

ω ω φ ω ω φ
ω ω

− + + + +
=

−
 (37) 

On the other hand, under the transformations (24) be-

comes 

0 1( , ) cosh( )
kt

x t re uε ω φ ε−= + +                   (38) 

where 1u  is given by (37) , r and φ given by (36). Re-

placing 
kt

reρ −=  and 0tψ ω φ= + , we can show that (38) 

is a unified solution of
(1)

(10) . Similarly, we can find the 

second unified solution of the form (22) from (5). 

3. Results and Discussion 

In order to test the accuracy of an approximate solution 

obtained by a certain perturbation method, one compares 

the approximate solution to the numerical solution (consi-

dered to be exact). With regard to such a comparison con-
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cerning the presented KBM method of this article, we refer 

to the works of Murty et,.al [5] (who found an over-

damped solution of a second order nonlinear system with 

constant coefficients), and Shamsul [6-7]. In our present 

paper, for different initial conditions, we have compared 

the perturbation solutions (16) of Duffing’s equations (7) to 

those obtained by Runge-Kutta Fourth-order procedure. 

First of all, x  is calculated by (20) with initial condi-

tions (0) 1.00000x =  0.00000x =ɺ  for 
1

1.162,λ = −

2
.8612λ = −  and .1ε = . The corresponding numerical 

solution is also computed by Runge-Kutta fourth-order 

method and is given in the third column of the Table 1. 

Moreover x  is calculated by (38). All the results are shown 

in Table 1. Percentage errors have also been calculated and 

given in the fourth column and sixth column of the Table 1. 

From Table 1, we see that errors for unified solution (38) 

occur more than 22%, while for the asymptotic solution 

(20), percentage errors are less than 1.25%. However, 

when the deference of two roots is much smaller than unity 

errors occur only 1% (Table 3). 

Table 1 

t  px  
nu

x  (1) %E  u
x  

(2) %E  

0.0 1.00000 1.00000 0.00000 1.00000 0.00000 

1.0 0.707868 0.716179 -1.1605 0.715523 -0.0916 

2.0 0.379374 0.381757 -0.6242 0.338067 -11.4445 

3.0 0.183567 0.183943 -0.2044 0.152127 -17.2967 

4.0 0.084622 0.084564 0.0686 0.067037 -20.7263 

5.0 0.037945 0.037851 0.2483 0.029178 -22.9135 

Table 2 

t  px  
nu

x  (1) %E  

0.0 1.00000 1.00000 0.00000 

1.0 0.708669 0.715368 -0.9364 

2.0 0.378369 0.379474 -0.2912 

3.0 0.181542 0.181205 0.1860 

4.0 0.082642 0.082230 0.5010 

5.0 0.036457 0.036198 0.7155 

4. Conclusion 

An asymptotic solution has been obtained for certain 

over-damped nonlinear systems, which has been found in 

the sense of extended KBM method, shows a good coinci-

dence with the numerical solution. 
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