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Abstract: A method for time-frequency analysis is given. The approach utilizes properties of Gaussian distribution, 

properties of Hermite polynomials and Fourier analysis. We begin by the definitions of a set of functions called Harmonic 

Gaussian Functions. Then these functions are used to define a set of transformations, noted �� , which associate to a 

function �, of the time variable �, a set of functions Ψ�  which depend on time, frequency and frequency (or time) standard 

deviation. Some properties of the transformations �� and the functions Ψ� are given. It is proved in particular that the square 

of the modulus of each function Ψ� can be interpreted as a representation of the energy distribution of the signal, represented 

by the function �, in the time-frequency plane for a given value of the frequency (or time) standard deviation. It is also shown 

that the function � can be recovered from the functions Ψ�. 
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1. Introduction 

The time-frequency analysis is an important field of study 

and has many important applications. In this analysis, a main 

purpose is to have a good representation of a signal and/or 

the distribution of its energy both in time and frequency. 

Because of the uncertainty relation, it is not possible to have 

a rigorous representation of the time-frequency distribution 

of the energy of a signal at any scale of resolution in time 

and frequency. Let � be a function, of the time variable �, 

which represent a signal and let �� be the Fourier Transform 

of �  

                            ��	
� � 1√2� � �	����
�� �������          	1.1a� 

                            �	�� � 1√2� � ��	
���
�� �����
          	1.1b� 

The variable 
 � 2�� is the angular frequency (if � is 

the frequency). We will use 
 as the frequency variable. 

The energy � of the signal is defined by the relation 

           � � � |�	��| ��
�� �� � � !��	
�! ��

�� �
              	1.2� 

The mean values "�  and "�  of time and frequency 

associated to the function � are 

 

 "� �  1� � �|�	��|2��            "
 � 1� � 
!�#	
�!2�
    	1.3� 

 

The time and frequency standard deviations are 

 

               %� � &1� �	� ' "�� |�	��| ��                            	1.4� 

 

                %� � &1� �	
 ' "
� !��	
�! �
                    	1.5� 

 
Using properties of Fourier transform and 

Cauchy-Schwarz inequality, it may be shown that we have 

the inequality  
 

%�%
 * 12                                        	1.6� 

 

The inequality (1.6) is the uncertainty relation between 

time and frequency. 
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Many attempts have been done to formulate methods to 

give a good solution to the problem of time frequency 

analysis. Most of those methods can be considered as based 

on the use of bilinear time-frequency distribution or 

short-time Fourier transform [1], [2], [3], [4], [5],[6]. 

Wavelets transforms can also considered as related to the 

time frequency analysis [7].  

One of the well known bilinear distribution which can be 

considered is the Wigner-Ville distribution [8],[9], [10],[11]. 

In signal analysis, the Wigner-Ville distribution may be 

defined as the function of the two variables time �  and 

frequency 
, associated to a function � of the variable � 

by the relation  

,-	�, 
� � 12� � �/ 0� ' 122 � 0� 3 122��
�� ����4�1 

                   � 12� � ��/ 5
 ' 627 �� 5
 3 627��
�� ��8��6    	1.7� 

where �� is the Fourier transform of �.  

If � is the energy of the signal represented by the function � as defined in the relation (1.2), we have the relations 

           � � � |�	��| ��
�� �� � � !��	
�! ��

�� �
           	1.8;� 

                � � � ,-	�, 
���
��

��
�� ���
                             	1.8<� 

The relations 	1.8;� and 	1.8<� suggest that the Wigner 

-Ville distribution may be interpreted as the density of the 

energy of a signal in the time-frequency plane. But it can be 

shown that the function ,- as defined in the relation 	1.7� 

is not positive definite. In fact, using Cauchy-Schwarz 

inequality in the space =  of Lebesgue square-integrable 

functions and the relations 	1.7� and (1.8a) we can deduce 

the inequality 

         !,-	�, 
�! > �� ?  ' �� > ,-	�, 
� > ��         	1.9� 

This propriety of the Wigner-Ville distribution doesn’t 

allow to interpret it easily as a good representation of the 

energy density. Depth studies on the Wigner-Ville 

distribution and its properties have been done by many 

authors to give solutions to this problem, as example of 

solution is the introduction of smoothing methods which 

reduce the amount of negativity. 

As mentioned previously, another method used in the 

time frequency analysis is the short-time Fourier transform.   

For a signal represented by a function � of the time variable  �, a short-time Fourier transform Ψ of � may be defined 

by the relation  

            Ψ	A, Ω� � 1√2� � �	����
�� C/	� ' A����Ω��� 	1.10� 

The function C  is the window function. C	��  has    

significant values in the vicinity of � � 0 and tends to zero 

outside this range. We have the relation 

� � |Ψ	A, Ω�| ��
��

��
�� �A�Ω � � � |�	��C	� ' A�| �A��

�� ����
��  

so if the window function C satisfies the relation 

             � |C	� ' A�| �A � 1��
��         

we have 

� � |Ψ	A, Ω�| ��
��

��
�� �A�Ω � � |�	��|23∞

'∞ �� � �   	1.11� 

According to this relation, the square of the modulus |Ψ	A, Ω�|  of the short time Fourier transform may be 

interpreted as a representation of the energy density of the 

signal in time-frequency plane. And unlike the case of the 

Wigner-Ville distribution, it is a positive definite distribution. 

A special case of short-time Fourier transform is the Gabor 

transform in which the window function C is a gaussian 

function 

                                     C	�� � 2F/H��I	��J                         	1.12� 

If we introduce the Gabor function 

      K	�, A, L� � C	� ' A���M� � 2F/H��I	��N�J��M�    	1.13� 

a Gabor transform of a function  � may be defined by the 

relation 

              Ψ	A, L� � 1√2� � K/	�, A, L��	����
�� ��         	1.14� 

In this paper, we tackle the problem of time-frequency 

analysis with the introduction of a set of transformations, 

noted �� 	O P Q�, which associate to a function � of the 

time variable � a set of functions Ψ� which depend on time, 

frequency and frequency (or time) standard deviation. We 

show that the square of the modulus of each function Ψ� 

may be interpreted as a representation of the time-frequency 

distribution of the energy of the signal corresponding to the 

function � (relations (4.9) and (4.10)). Then we show that 

the function �  can be recovered from the functions Ψ� 

(section 5). 

For the definitions of the transformations �� , we 

introduce a set of functions {K�R that we will call harmonic 

Gaussian functions. In a certain point of view, the functions K� may be seen as generalizations of Gabor functions and 

the transformations ��  as generalizations of Gabor 

transformations. However, our results show obviously that 

there are differences between our method and the Gabor’s 

one. Compared to the Wigner-Ville distribution, the energy 

distributions that we introduce in our method has the 

advantage to be positive definite. 
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2. Harmonic Gaussian Functions  

For positive integers  O , let us define a set of 

orthonormalized functions denoted K� such as 

          K�	�, A, Ω, Δ�� � T� 5 � ' A√2Δ�7
U2�O! √2�Δ� ��0��N W�2J��Ω�       	2.1� 

       � KX/
��

�� 	�, A, Ω, Δ��K�	�, A, Ω, Δ���� � YX�         	2.2� 

in which T�	Z�  is Hermite polynomial of degree O . 

Useful properties of Hermite polynomials are recalled in the 

appendix A. The set of functions [K�R�PQ is an orthonormal 

basis of the vectorial space =  of Lebesgue square 

integrable functions. 

By taking into account the relations (A.6) and (A.7) in the 

appendix A, we may establish easily the relations 

                  � �|K�	�, A, Ω, Δ��| ��
�� �� � A                        	2.3� 

  � 	� ' A� |K�	�, A, Ω, Δ��| ��
�� �� � 	2O 3 1�	Δ��   	2.4� 

According to the relations (2.3) and (2.4), we call A the 

temporal mean value ,  	Δ��� � 	2O 3 1�	Δ��  the time 

variance and Δ�� the time standard deviation corresponding 

to K�. 

According to the result given in the appendix B, the 

expression of the Fourier transform K\� of the function K� 

is  

K\�	
, A, Ω, Δ
� � ]�T� 5 
 ' Ω√2Δ
7
U2�O! √2�Δ
 ��0� �Ω W� 2J��N	� �Ω�	2.5� 

in which Δ
 is related to Δ� by the relation  

                                            Δ�Δ
 �  12                                  	2.6� 

From now on, we assume that the relation (2.6) is always 

fulfilled by Δ� and Δ
.  

As for the case of K�, we may establish in the case of K\� 

the relations 

  � K\X/
��

�� 	
, A, Ω, Δ
�K\�	
, A, Ω, Δ
��
 � Y�X        	2.7� 

                 � 
|K\�	
, A, Ω, Δ
�| ��
�� �
 � Ω                  	2.8� 

� 	
 ' Ω� |K\�	
, A, Ω, Δ
�| ��
�� �
 � 	2O 3 1�	Δ
� 	2.9� 

According to the relations (2.8) and (2.9), we call Ω the 

frequency mean value ,  	Δ
�� � 	2O 3 1�	Δ
�  the 

frequency variance and Δ
�  the frequency standard 

deviation corresponding to K\�.  

Because of the similarity between the expression (2.1) of 

a function K�  and the expression of wave functions of a 

linear harmonic oscillator in quantum mechanics [12], we 

will call a function K� a Harmonic Gaussian Function of 

degree  O ”. According to the above results, a Harmonic 

Gaussian Function is characterized by its time mean value A, 

its frequency mean value Ω , its time variance 	Δ��� �	2O 3 1�	Δ��  and its frequency variance 	Δ
�� � 	2O 31�	Δ
� .  Δ� and Δ
 are related by the relation (2.6). 

3. Representations of a Signal with 

Functions Defined in the 

Time-Frequency Plane 

Let �  be a function of the time variable  �  which 

represent a signal,  �  is an element of the space =  of 

Lebesgue square-integrable functions. Let be �� the Fourier 

transform of �, �� is  an element of =  too. We denote ^ 

the functions space generated by functions Ψ defined in the 

time-frequency plane i.e. functions of the two variables A, Ω 

and which is Lebesgue square-integrable in the 

time-frequency plane _ � [	A, Ω�R 

                � � |Ψ	A, Ω �| ��
��

��
�� �A�Ω � ` a 3∞        	3.1� 

For a positive integer O, let be �� the application of =  

to ^  defined by  

     ��:    = c ^  
                                   � d Ψ� � ��	�� 

 e  Ψ�	A, Ω, Δ
� � 1√2� � K�/ 	�, A, Ω, Δ���	������
��   	3.2� 

                              � 1√2� � K\�/ 	
, A, Ω, Δ
���	
���
�� �
	3.3� 

 In the relations (3.2) and (3.3), the function K�/  is the 

complex conjugate of the harmonic Gaussian function K� 

defined in the relation (2.1) and the function K\�/  is the 

complex conjugate of the Fourier transform K\� (relation 2.5) 

of the function K�. 

Theorem 1 

The transformation �� is linear 

f�, g P =  ,   fh, " P i : 
                       ��	h� 3 "g� � h��	�� 3 "��	g�           	3.4� 

Proof 

Using the relation (3.2), we have 

��j	h� 3 "g�	��k 
� 1√2� � K�/ 	�, A, Ω, Δ��jh�	�� 3 "g	��k��

��  �� 
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� h√2� � K�/ 	�, A, Ω, Δ���	������
��  

3 "√2� � K�/ 	�, A, Ω, Δ��g	������
��  

� h��j�	��k 3 "��jg	��k 
l ��	h� 3 "g� � h��	�� 3 "��	g� 

According to the definitions of the transformations ��, a 

function Ψ�  may be considered as a time-frequency 

representation of the signal corresponding to the function �  

for a given time resolution characterized by the time 

standard deviation Δ�� � U	2O 3 1� Δ�  and for a given 

frequency resolution characterized by the frequency 

standard deviation Δ
� � U	2O 3 1� Δ
. Δ� and Δ
 are 

related by the relation (2.6). The next section gives more 

justification to this point of view. 

4. Representations of the Energy 

Distribution in the Time-Frequency 

Plane 

We consider a signal represented by the functions �, ��  
and Ψ� as defined in the previous section. The energy � of 

the signal is given by the relations 

                     � � � |�	��| ��
�� �� � � !��	
�! ��

�� �
    	4.1� 

In this section, we prove that the square of the modulus of 

the function Ψ� for a given O P Q may be interpreted as a 

representation of the distribution of the energy of the signal 

in the time frequency plane at a given scale of resolution 

characterized by frequency (or time) standard deviation.  

Theorem 2 

Let us consider the functions  

             m�	A, ∆�� � � |Ψ�	A, Ω, Δ
�| ��
�� �Ω                 	4.2� 

                o�	Ω, ∆
� � � |Ψ�	A, Ω, Δ
�| ��
�� �A             	4.3� 

We have the relations 

m�	A, ∆�� � � |K�	�, A, Ω, Δ��| |�	��| ��
�� ��             	4.4;� 

 � � pT� 5 � ' A√2Δ�7p 

2�O! √2�Δ�
��

�� ��5 ��N√ W�7J|�	��| ��  	4.4<� 

o�	Ω, ∆
� � � |K\�	
, A, Ω, Δ
�| !��	
�! ��
�� �
     	4.5;� 

� � pT� 5 
 ' Ω√2Δ
7p 

2�O! √2�Δ

��

�� ��5 ��Ω√ W�7J|�	
�| �
           	4.5<� 

Proof 

To prove the relations  	4.4;�  and 	4.4<� , we use the 

relation  	3.2�, then we have 

m�	A, ∆�� � � |Ψ�	A, Ω, Δ��| ��
�� �Ω 

� 12� j� � �  K�	�, A, Ω, Δ����
��

��
��

��
�� K�/ 	�q, A, Ω, Δ�� 

�	���/	�r�k ����q�Ω 

� [� � j 12� �  K�	�, A, Ω, Δ����
��

��
��

��
�� K�/ 	�q, A, Ω, Δ���Ωk 

�	���/	�r�R ����q 
We have for the Ω integration 

12� � K�	�, A, Ω, Δ����
�� K�/ 	�q, A, Ω, Δ���L 

� � T� 5 � ' A√2Δ�7 T� 5 �q ' A√2Δ� 7
2�O! √2�Δ�

��
�� ��0��N W�2J�5�s�N W� 7J ��Ω	���s�

2� �Ω 

� T� 5 � ' A√2Δ�7 T� 5  �r ' A√2Δ� 7
2�O! √2�Δ� ��0��N W� 2J�5�s�N W� 7JY	� ' �q� 

in which Y	� ' �r� is the Dirac’s distribution 

l m�	A, ∆��
� � � jT� 5 � ' A√2Δ�7 T� 5  �r ' A√2Δ� 7

2�O! √2�Δ� ��0��N W� 2J�5�s�N W� 7J

                     
��

��
��

��  

                        �	���/	�r�Y	� ' �r�k����q 
� � pT� 5 � ' A√2Δ�7p 

2�O! √2�Δ�
��

�� ��F 0��NW� 2J|�	��| �� 

� � |K�	�, A, Ω, Δ��| |�	��| ��
�� �� 

The proof of the relations 	4.5;�  and (4.5b) may be 

obtained by analogy. 

The relations 	4.2� and 	4.3� lead to the relations 

� � |Ψ�	A, Ω, ∆
�| ��
�� �A�Ω��

�� � � m�	A, ∆����
�� �A 

   � �  o�	Ω, ∆
���
�� �Ω                                                       	4.6� 
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From the relations (4.4b) and (4.5b) we can also deduced 

the relations 

                            t]uv�wx m�	A, ∆�� � |�	A�|                         	4.7� 
                            t]uv�wx  o�	Ω, ∆
� � !��	Ω�!                     	4.8� 

But the two limits are not to be performed simultaneously 

because of the relation (2.6) 

Theorem 3 

We have the relations 

� � |Ψ�	A, Ω, ∆
�| ��
�� �A�Ω��

��  

� � m�	A, ∆����
�� �A � � |�	��| ��

�� �� � �                   	4.9� 

� �  o�	Ω, ∆
���
�� �Ω � � !��	
�! ��

�� �
 � �         	4.10� 

Proof 

To prove the relation (4.9), we utilize the relations (4.6) 

and (4.4b) 

 

� � |Ψ�	A, Ω, ∆
�| ��
�� �A�Ω��

�� � � m�	A, ∆����
�� �A 

� � � pT� 5 � ' A√2Δ�7p 

2�O! √2�Δ�
��

�� ��5 ��N√ W�7J|�	��| ���A ��
��

 

� � j � pT� 5 � ' A√2Δ�7p 

2�O! √2�Δ�
��

�� ��5 ��N√ W�7J�Ak|�	��| ��
�� �� 

� � |�	��| ��
�� �� � � 

The relations (4.10) may be obtained by analogy from the 

relations (4.6) and (4.5b) instead of the relation (4.4b). 

The analysis of the results in the theorems 2 and 3 leads to 

the following remarks and interpretations: 

-The function m�	A, ∆��  may be interpreted as a 

representation of the instantaneous power distribution of the 

signal at the scale of resolution characterized by the time 

standard deviation. 

-The function o�	Ω, ∆
�  may be interpreted as a 

representation of the spectral energy distribution of the 

signal at the scale of resolution characterized by the 

frequency standard deviation. 

-The function  |Ψ�	A, Ω, ∆
�|  may be interpreted as a 

representation of the energy distribution of the signal in the 

time-frequency plane at the scale of resolution characterized 

by the time (or frequency) standard deviation. 

Because of the existence of the parameter O , we may call  

m�	A, ∆��  a representation of the instantaneous power 

distribution of the signal at order O , o�	Ω, ∆
�  a 

representation of the spectral energy distribution of the 

signal at order O  and  |Ψ�	A, Ω, ∆
�|  a  representation 

of the time frequency distribution of the energy of the signal 

at order O.   

5. Recovering of the Original Function 

and another Expression for the 

Energy  

We can recover the function � from the functions Ψ�. 

Theorem 4 

We have the relations 

       �	�� � y √2�Ψ�	A, Ω, ∆
�
�

K�	�, A, Ω, Δ��          	5.1� 

       � � � |�	��| ��
�� �� � y 2�|Ψ�	A, Ω, ∆
�| 

�
       	5.2� 

Proof 

Let us expand the function � in the basis [K�R�PQ 

�	�� � y z�	A, Ω, Δ��
�

K�	�, A, Ω, Δ�� 

z�	A, Ω, Δ��  are the components of �  in the basis [K�R�PQ. According to the relation (2.2), the basis  [K�R�PQ 

is an orthonormal basis, so we have 

z�	A, Ω, Δ�� � � K�/ 	�, A, Ω, Δ���	����
�� �� 

       � √2� Ψ�	A, Ω, ∆
� 

The last equality follows from the relation (3.2). 

The relation (5.2) can be deduced easily from the relation 

(5.1) and the orthonormality of the basis [K�R�PQ.  

Theorem 5 

For the recovering of the function �, we have also the  

relation 

 

�	�� � 1√2� � � Ψ�	A, Ω, ∆
���
�� K�	�, A, Ω, Δ����

�� �A�Ω  
Proof 

 1√2� � � Ψ�	A, Ω, ∆
���
�� K�	�, A, Ω, Δ����

�� �A�Ω � 

 12� � � � K�/ 	�q, A, Ω, Δ����
�� �	�q�K�	�, A, Ω, Δ����q�A�Ω��

��
��

��  
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� � � T� 5 � ' A√2Δ�7 T� 5 �q ' A√2Δ� 7
2�O! √2�Δ�

��
�� �	�q���j	��N ∆� �J�	�s�N ∆� �Jk��

��
��

��  

���	���r�
2� �Ω��q�A 

 

� � � T� 5 � ' A√2Δ�7 T� 5 �q ' A√2Δ� 7
2�O! √2�Δ�

��
��

��
�� �	�q���j	��N ∆� �J�	�s�N ∆� �Jk

 

Y	� ' �q���q�A 

 

� � pT� 5 � ' A√2Δ�7p 

2�O! √2�Δ�
��

�� �	����j	 ��N√ ∆��Jk�A 

 

� �	�� 

6. Conclusions 

We may conclude that the introduction of harmonic 

Gaussian functions gives a possibility to establish new 

methods to tackle the problem of time -frequency analysis. 

Our approach differs particularly with other ones in the fact 

that we introduce simultaneously a set of functions which 

allows to have a set of possible representations of the energy 

distribution according to the values of the parameter  O in 

the expression of the harmonic Gaussian function K�. And it 

is possible to have more possible representations according 

to the values of the frequency (or time) standard deviation.  

As shown in the relations (4.9) and (4.10), our approach 

allows also to have, with the set of the possible 

representations of the energy distribution in time-frequency 

plane, the sets of possible representations of the 

instantaneous power distribution (functions m� ) and 

possible representations of the spectral energy distribution 

(functions o�). 

Another interesting result is also the possibility of 

recovering the original function  �  which represents the 

signal from the functions  Ψ� (section 5). This recovering 

may be obtained by making a summation on the index O or 

by making an integration on the time-frequency plane _ � [	A, Ω�R. The first expansion needs the knowledge of 

the expression of all the functions Ψ� for all O for a given 

value of  Δ
. The second one needs the knowledge of the 

expression of one function Ψ� for a given values of O and Δ
. 

The expression of the signal’s energy given in the relation 

(5.2) which is a direct consequence of the relation (5.1) may 

allows also to interpret  2�|Ψ�	A, Ω, ∆
�|  as the part of 

the energy of the signal which corresponds to the harmonic 

Gaussian function of degree O for a given values of A, Ω 

and ∆
. 

More depth studies on the physical meaning of the 

obtained mathematical results may give more interesting and 

useful insights for the theory of signal analysis and signal 

processing. 

Appendix A 

Useful properties of Hermite Polynomials [12] 

For positive integers O, the Hermite polynomial T�	Z� 

can be defined by the relation 

                      T�	Z� � 	'1���{J ��
�Z� |��{J}                  	~. 1� 

The following properties may be established. 

Property 1 

For any O P Q  and for any  Z P � , we have the 

recurrence relation: 

                           T��F	Z� � 2ZT�	Z� ' T�r 	Z�                  	~.2) 

Property 2 

Let us expand the Hermite polynomials  

T�	Z� � y ;��
�

��x
Z� 

Then we have the following relations: ;�� � 2� (coefficient of Z� in T�	Z�) ;��F� � 0 (coefficient of Z��F in T�	Z�) ;�� � 2;��F��F ' 	m 3 1�;��F��F   for O ' 1 � � � 0     ;x� � ;F��F 

Property 3 

Le � be the function, of two variables  Z and �, defined 

by the relation �	Z, �� � � {���J
. We have the relation 

                               �	Z, �� � y T�	Z�
�

��
O!                      	~. 3� 

�	Z, �� is the generating function of the Hermite 

polynomials 

Property 4 

For all positive integers O and u , one has the relation of 

orthogonalization  

� TX	Z�T�	Z���
�� ��{J�Z � 2�O! √�YX�                	~. 4� 

If we make the variable change 

Z � � ' A√2∆� l �Z � ��√2∆� 

we may deduce from the relation (A.4) the relation of 

orthonormalization 

  � TX 5� ' A√2∆�7 T� 5� ' A√2∆�7
√2��XO! u! √2�∆�

��
�� ��F 	��N∆� �J�� � YX�      	~. 5� 
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Property 5 

           � ���
��

pT� 5� ' A√2∆�7p 

2�O! √2�∆� ��F 	��N∆� �J�� � A                  	~. 6� 

           � 	� ' A� ��
��

pT� 5� ' A√2∆�7p 

2�O! √2�∆� ��F 	��N∆� �J�� 

                  � 	2O 3 1�	Δ�� � 2 5O 3 127 	Δ��             	~. 7� 

Appendix B 

Fourier Transform of a harmonic Gaussian function 

Let us consider a harmonic Gaussian function K�  as 

defined in the section 2: 

           K�	�, A, Ω, Δ�� � T� 5� ' A√2∆�7
U2�O! √2�Δ� ��0��N W�2J��Ω�              

Our purpose is to prove that the expression of the Fourier 

transform K\� of the function K�  is  

K\�	
, A, Ω, Δ
� � 1√2� � K�	�, A, Ω, Δ����
�� �������      

                         � 	]��T� 5 
 ' Ω√2Δ
7 ��0��Ω W�2J

U2�O! √2�Δ
 ���N	��Ω�	�. 1� 

in which  Δ
 is related to Δ� by the relation Δ�Δ
 � F .  

Let us perform the calculation 

K\�	
, A, Ω, Δ
� � 1√2� � K�	�, A, Ω, Δ����
�� ������� 

� 1
U2�O! 2�√2�Δ� � T� 5� ' A√2∆�7��

�� ��0��N W� 2J���	��Ω���� 

We make the variable change  

Z � � ' A√2Δ� l �� � √2Δ��Z 

K\�	
, A, Ω, Δ
� 

� ���N	��Ω�√Δ�
U2�O! �√2� � T�	 Z���{J ��√ W�	��Ω�{��

�� �Z 

For ; � 0, let ��	;, <� be the integral  

                     ��	;, <� � � T�	 Z���
�� ��|�{J���{}�Z       	�. 2� 

K\�	
, A, Ω, Δ
� � �']A	
'Ω�√Δ�
U2OO! �√2� ��	12 , √2Δ�	
 ' Ω�� 	�. 3� 

Let us determine the expression of the integral ��	;, <�. 

We introduce in the calculation the generating function of 

Hermite polynomials 

�	Z, �� � � {���J  � y T�	Z�
�

��
O!  

On one side 

� �	Z, ����|�{J���{}��
�� �Z � � ���{J�	 �����{��J��

�� �Z 

 � ��; �	 �����H� J��J � ��; ���JH�������  �	F��� ��J
 

� ��; ���JH�� j � �	 �F����/Jkj� 	F��� ��/J�k�j� 	F��� ��/J�kJ
 

� ��; ���JH��j <2; 	 ;1 ' ;�F/ , ]	1 ' ;; �F/ �k 
� ��; ���JH� y T�j <2; 	 ;1 ' ;�F/ k]�	1 ' ;; ��/ 

�
��
O!  

� yj]���; 	1 ' ;; ��/ T�	 <
2U;	1 ' ;��

�
���JH�k ��

O!      	�. 4� 

On the other side 

� �	Z, ����|�{J���{}��
�� �Z 

� yj
�

� T�	Z���
�� ��|�{J���{}�Zk ��

O!                               	�. 5� 

By comparing the relations (B.4) and (B.5), we may 

identify 

��	;, <� � � T�	 Z���
�� ��|�{J���{}�Z 

              � 	]����; 51 ' ;; 7
� T�	 <

2U;	1 ' ;�����JH�     	�. 6� 

Then we have for ; � F  and < � √2Δ�	
 ' Ω� 

�� 512 , √2Δ�	
 ' Ω� 7 

 

� 	]��√2�T�j√2Δ�	
 ' Ω�k��W�J	��Ω�J
 

Introducing the quantity Δ
 

     Δ
Δ� � 12 e Δ� � 12Δ
 e 	Δ�� � 14	Δ
�         	�. 7� 
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we obtain  

 

�� 512 , √2Δ�	
 ' Ω� 7 � 	]��√2� T� 5
 ' Ω√2Δ
7 ��0��Ω W�2J
 

Introducing the relations (B.7) and (B.8) in the relation 

(B.3) and rearranging, we obtain as expected the relation 

K\�	
, A, Ω, Δ
� � 	]��T� 5 
 ' Ω√2Δ
7 ��0��Ω W�2J

U2�O! √2�Δ
 ���N	��Ω� 
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