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Abstract 

The current stage of development of the theory of almost periodic functions is characterized by a desire for analysis and 

processing of a huge amount of accumulated scientific and practical material. The theory of almost periodic functions arose in the 

20-30 s of the twentieth century; currently, extensive literature has accumulated on various issues of this theory. Long before the 

creation of the general theory of almost periodic functions, the outstanding Riga mathematician P. Bol drew attention to such 

functions. For functions of many variables f(x1, x2,...xp), Bol considered the corresponding multiple Fourier series and, in 

p-dimensional Euclidean space, a straight line passing through the origin: x1=a1 t, x2=a2 t,..., xp=apt, where a1, a2, ..., ap - some 

real, non-zero numbers. Considering the value of the function f(x1, x2,...xp) on this line, he obtains a function of one variable φ(t) 

= f(a1 t, a2 t,...ap t) and proves that this function is almost periodic. With some choice of numbers a1, a2, ..., ap - it may happen that 

this function is periodic. However, if the numbers a1, a2, ..., ap are linearly independent, then you can easily make sure that the 

function will not be a periodic function. Further development of the problem was carried out by the French mathematician E. 

Escalangon. However, the main significant drawback of the results of Bol and Escalangon was that from the very beginning, 

starting with the definition of almost-periodic functions, they introduced into consideration a fixed system of numbers a1, a2, ..., 

ap associated with the almost-period (τ). This drawback was eliminated by the Danish mathematician G. Bohr, who developed in 

general terms the theory of continuous almost-periodic functions. Bohr's research in its methods was closely related to Bohl's 

research. However, Bohr did not impose restrictions such as Bohl’s inequality in advance for the almost period. The results 

obtained by Bol and Bohr were based on the deep connection between almost periodic functions and periodic functions of many 

variables. The article examines the question of sufficient conditions for the absolute and uniform convergence of Fourier series of 

uniform almost periodic functions in the case when the Fourier exponents have a single limit point at zero, i.e. λk→0 (k→∞). In 

this case, the Laplace transform is used for the first time as a structural characteristic. 
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1. Introduction 

When studying the convergence of Fourier series of 

uniform almost-periodic functions, we are faced from the very 

beginning with a serious difficulty, namely that the Fourier 

exponents can lie densely everywhere, and therefore it is not 

clear in what order the terms of the Fourier series should be 

summed. In the case when the Fourier series converges 

absolutely, the question of the order of the terms of the Fourier 

series disappears. 

Let 𝑓(𝑥) be a function integrable with degree 𝑝 (1 ≤ 𝑝 ≤

∞) on the interval ,– 𝜋; 𝜋- with norm 

‖𝑓(𝑥)‖𝑝 = 2
1

2𝜋
∫ |𝑓(𝑥)|𝑝𝜋

−𝜋
𝑑𝑥3

1/𝑝

< ∞ (1 ≤ 𝑝 < ∞),  

and for 𝑝 = ∞ 

‖𝑓(𝑥)‖𝑝 = 𝑣𝑟𝑎𝑖 sup−∞<𝑥<∞|𝑓(𝑥)| < ∞,  

and has a Fourier series 

𝑓(𝑥)~
𝑎0

2
+ ∑ (𝑎𝑚 cos 𝑚𝑥 + 𝑏𝑚 sin 𝑚𝑥)∞

𝑚=1 ,  

where 

𝑎0 =
1

𝜋
∫ 𝑓(𝑥)𝑑𝑥,

𝜋

−𝜋
 𝑎𝑚 =

1

𝜋
∫ 𝑓(𝑥) cos 𝑚𝑥 𝑑𝑥,

𝜋

−𝜋
  

𝑏𝑚 =
1

𝜋
∫ 𝑓(𝑥) sin 𝑚𝑥 𝑑𝑥

𝜋

−𝜋
  

Fourier coefficients of the function 𝑓 ∈ 𝐿𝑝 ,−𝜋, 𝜋- (see, 

for example, [1-5]). 

Definition 1 [2]. The function 𝑓(𝑥)  is called - 

almost-periodic, or almost-periodic in the sense of Bezikovich 

(𝑝 ≥ 1), if 

1. 𝑓(𝑥) измеримая и |𝑓(𝑥)|𝑝  интегрируема 

в смысле Лебега на любом конечном отрезке; 

2. 𝐷𝐵𝑝
*𝑓(𝑥)+ = 2𝑙𝑖𝑚

𝑇→∞
̅̅ ̅̅ ̅ 1

2𝑇
∫ |𝑓(𝑥)|𝑝𝑑𝑥

𝑇

−𝑇
3

1/𝑝

< ∞;  

3. There is a sequence of trigonometric sums 

𝑃𝑛(𝑥) = ∑ 𝐶𝑘
𝑛
𝑘=1 𝑒𝑥𝑝(𝑖𝜆𝑘𝑥),  

for which 𝑙𝑖𝑚𝑛→∞ 𝐷𝐵𝑝
*𝑓(𝑥) − 𝑃𝑛(𝑥)+ = 0. 

The space of such functions that satisfy all the conditions of 

definition 1. is called 𝐵𝑝  – space, or Bozicevic space, in 

which the norm of the function is 𝑓(𝑥) ∈ 𝐵𝑝 (p≥1) the value 

is assumed 

‖𝑓(𝑥)‖𝐵𝑝
= 2 lim

𝑇→∞
̅̅ ̅̅ ̅ 1

2𝑇
∫ |𝑓(𝑥)|𝑝𝑑𝑥

𝑇

−𝑇
3

1

𝑝
< ∞.  

As can be seen from definition 1., a sequence of numbers 

𝛬 { 𝜆𝑛 } is associated with each function from the space 

𝐵𝑝 (𝑝 ≥ 1), which is the spectrum of this function. Under the 

spectrum 𝛬*𝜆𝑛 + for the function 𝑓(𝑥) ∈ 𝐵𝑝 is understood as 

the set of its Fourier exponents, which can be used to match 

the Fourier series. 

In the works of B. M. Levitan [5], E. A. Bredikhina [6, 7], 

A. S. Museliak [8], N. P. Kuptsov [9], A. G. Pritula [10], A. S. 

Jafarov and G. A. Mammadov [11], Yu. Kh. Khasanova, F. M. 

Talbakova [12-16] and others obtained some necessary and 

sufficient conditions for the absolute convergence of Fourier 

series of almost periodic in the sense of Bohr and Bezikovich 

functions. 

J. Museliaka [8] showed that if the spectrum 𝜆𝑛 → ∞ 

and  𝑛𝛼 = 𝛰*𝜆𝑛+ , 𝑛 → ∞, 𝛼 > 0,  then for the function 

𝑓(𝑥) ∈ 𝐵2 the conditio 

∑ 𝑛
1−

𝛽
2

𝛼
−1∞

𝑛=1 𝜔1
𝛽

(𝑓;
1

𝑛
)𝑩2

< ∞             (1) 

for 0 < 𝛽 < 2 the series converges ∑ |𝐴𝑛|𝛽 < ∞.∞
𝑛=1  

N. P. Kuptsov [9] showed that for functions 𝐹(𝑥) ∈ 𝐵 

condition (1) with 𝛼 = 1, 𝛽 = 1with the change of quantity 

𝜔1(𝑓;
1

𝑛
)𝑩1

on 𝜔2(𝑓;
1

𝑛
)𝑩2

 ensures the validity of relation 

∑ |𝐴𝑛|𝛽 < ∞.∞
𝑛=1  

In the work of A. G. Prituly [10] prove that if 𝜆𝑛 → ∞, 0 <

𝛽 < 𝑞, 2 ≤ 𝑞 < ∞, 𝛾 > 0 condition is met  

∑ (
𝜆2𝜈

𝜆2𝜈−1
)𝛽∞

𝜈=1 𝜔1
𝛽

(𝑓;
1

𝜆2𝜈
)𝑩𝑝

2
𝜈(𝛾+

𝑞−𝛽

𝑞
)

< ∞, That 

∑ |𝐴𝑛|𝛽𝑛𝛽 < ∞.∞
𝑛=1  

In the case when ∈ 𝐵𝑝 , 1 < p ≤ 2, λn → 0, A. S. Jafarova 

and G. A. Mamedova [11] established the convergence of the 

series ∑ |𝐴𝑛|𝛽𝜑(𝑛),∞
𝑛=1  under certain conditions on 𝜑(𝑛) . 

Instead of the continuity modulus they used the characteristic 

Ω(𝑓; 𝐻; 𝛿; 𝜃) =

𝛿 min𝑥|∫ exp (−𝛿𝜃)𝑓(𝑥 − 𝑡)exp (𝑖𝜃𝑡)𝑑𝑡
∞

0
|, 𝛿 > 0, 𝜃 ∈ 𝑅.  

In the work of Yu. Kh. Khasanov [12] established some 

necessary and sufficient conditions for the absolute 

convergence of Fourier series of almost-periodic Besicovitch 

functions when the Fourier exponents have limit points at 

infinity or zero. The results of this work are analogues of some 

results from [13, 16] for the class of uniform almost periodic 

Bohr functions. 

2. Main Results 

The work examines sufficient conditions for the absolute 

and uniform convergence of Fourier series of functions that 

are almost periodic in the sense of Bohr. 
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Almost periodicity is a generalization of ordinary 

periodicity 

To obtain guiding considerations for determining almost 

periodicity, consider the following example. Let 

𝑞(х)  =  𝑐𝑜𝑠 х + 𝑐𝑜𝑠√2 𝑥.  

Each term in this sum is a periodic function but 

the periods are incommensurable and therefore the sum is 

not periodic 

function. However, it is easy to establish the existence of 

the function 𝑞(х) as 

called displacements or almost periods. This follows from 

one theorem 

Kronecker, which, by the way, will be proven in the next 

paragraph 

In particular, in our case, from Kronecker’s theorem it 

follows that for 

arbitrary, positive number 8 "those) there are integers 

𝑛1 and 𝑛2 and an arbitrarily large real number m, which 

are satisfactory allow inequalities 

⌊𝜏 − 2𝜋n1⌋ < 𝛿,    ⌊√2𝜏 − 2𝜋n2⌋ < 𝛿.  

That's why 

⌊𝑞(х + 𝜏) − 𝑞(х)⌋ =  

= |𝑠𝑖𝑛(𝑥 + 𝜏) + 𝑠𝑖𝑛√2 (𝑥 + 𝜏) − 𝑠𝑖𝑛 𝑥 − s𝑖𝑛 √2𝑥| ≤  

≤ |𝑠𝑖𝑛(𝑥 + 𝜏) − 𝑠𝑖𝑛 𝑥| + |𝑠𝑖𝑛 √2(𝑥 + 𝜏) − s𝑖𝑛 √2𝑥| =  

= |𝑠𝑖𝑛(𝑥 + 𝜏 − 2𝜋n1) − 𝑠𝑖𝑛 𝑥| + |𝑠𝑖𝑛 (√2𝑥 + √2𝜏 −

2𝜋n2) − s𝑖𝑛 √2𝑥| = |2𝑐𝑜𝑠 
1

2
(2𝑥 + 𝜏 − 2𝜋n1)𝑠𝑖𝑛 

1

2
(𝜏 −

2𝜋n1)| + |2𝑐𝑜𝑠 
1

2
(2√2𝑥 + √2𝜏 − 2𝜋n1)𝑠𝑖𝑛 

1

2
(√2𝜏 −

2𝜋n1)| ≤ 4𝑠𝑖𝑛
𝛿

2
.  

And since 8 can be chosen as small as desired, the 

difference 𝑞(𝑥 +  𝜏) − q(𝑥), with corresponding m, will be 

arbitrarily small in absolute value. 

In connection with this example, we come to the main thing 

for the whole theory the concept of displacement or almost 

period. 

Definition 2 [5]. Number 𝜏 called displacement {almost 

period) 

functions 𝑓(𝑥)  corresponding to the number 𝜀  ( 𝜀 

-displacement, 𝜀 -pochgpi period), if inequality holds 

s𝑢𝑝
−∞<x<∞

|𝑓(𝑥 + 𝜏) − 𝑓(𝑥)| < 𝜀. 

Note that if 𝜏 is an 𝜀 -displacement, then 𝜏 is also an 𝜀 

-displacement. If 𝜏1  is an 𝜀1 -displacement and 𝜏2  is an 

𝜀1 -displacement, then the numbers 𝜏1 ± 𝜏2  are 𝜀1 ±

𝜀2 -displacement. The last statement follows from the 

inequality 

s𝑢𝑝−∞<x<∞ |𝑓(𝑥 + 𝜏1 ± 𝜏2) − 𝑓(𝑥)| ≤

≤ s𝑢𝑝−∞<x<∞ |𝑓(𝑥 + 𝜏1 ± 𝜏2) − 𝑓(𝑥 + 𝜏1)| +

s𝑢𝑝−∞<x<∞ |𝑓(𝑥 + 𝜏1 ± 𝜏2) − 𝑓(𝑥 + 𝜏2)| < 𝜀1 + 𝜀2.  

Let 𝑞(𝑥) be a periodic function and 𝜏 its period. Then 

oh it is clear that 𝜏 will also be almost a period for q(x), 

corresponding to any 𝜀 > 0. 

 If the function 𝑓(𝑥)  is uniformly continuous over the 

entire real axis, then for any 𝜀 > 0  there are always 

sufficiently small displacements, however, it is clear that these 

shifts are not of particular interest. 

It is natural to demand the existence for every 𝜀 > 0  

arbitrarily large displacements. But if we limit ourselves only 

to this requirement, then as Bohr showed (in the appendix to 

the first main memoir), we do not we obtain a linear class of 

functions; in other words, the sum of two functions, each of 

which has, for any 𝜀 > 0, arbitrarily large offsets will not 

always satisfy the same condition. 

Therefore, the requirements imposed on offsets should be 

strengthened. 

For this purpose, we introduce the concept of a relatively 

dense set. 

Definition 3. The set 𝐸 of real numbers is called 

relatively dense t if there exists a number 𝑙 >  0 such that 

in each interval valid axes length 𝑙 (𝑎 <  𝑥 <  𝑎 +  𝑙) there 

will be at least one plural number 𝐸. 

For example, the numbers of the arithmetic progression 

𝑛𝑝(𝑛 =  0, ±1, ±2, . . . ) form a relatively dense set just like 

numbers of the form ±√𝑛 (𝑛 is an integer, positive). On the 

contrary, numbers of the form ± 𝑛2 are not form a relatively 

dense set. 

Definition 4 [3, 5]. A function 𝑓(𝑥) continuous on the 

entire real axis is called uniform almost periodic if for each 

𝜀 > 0 one can specify positive numbers 𝑙 = 𝑙(𝜀) such that in 

each interval of length l there is at least one number τ, for 

which 

|𝑓(𝑥 + 𝜏) − 𝑓(𝑥)| < 𝜀  (𝑥 ∈ 𝑅).  

The space of such functions with norm 

‖𝑓(𝑥)‖𝐵 = sup𝑥∈𝑅|𝑓(𝑥)|  

denote by 𝐵 and write the Fourier series of the function 

𝑓(𝑥) ∈ 𝐵 in the form 

𝑓(𝑥)~ ∑ 𝐴𝑘 exp(𝑖𝜆𝑘𝑥)∞
𝑘=−∞ ,  

𝐴𝑘 = lim𝑇→∞
1

2𝑇
∫ 𝑓(𝑥) exp(−𝑖𝜆𝑘𝑥) 𝑑𝑥,

𝑇

−𝑇
  

where the numbers *𝜆𝑘+ are Fourier exponents that have a 

single limit point at zero, that is 
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𝜆𝑘 > 0 (𝑘 > 0), 𝜆−𝑘 = −𝜆𝑘 , |𝜆𝑘| < |𝜆𝑘−1|, (𝑘 =

1, 2, … ), lim𝑘→∞|𝜆𝑘| = 0.         (2) 

In this paper we will indicate some sufficient conditions for 

the convergence of the series 

∑ |𝐴𝑘|𝛽 |𝑘|𝛾(𝛾 > 0, 𝛽 > 0).∞
𝑘=−∞          (3) 

For the function 𝑓(𝑥) ∈ 𝐵 , consider the integral 

representation 

𝐹(𝑥) = 𝜃 ∫ 𝑒−𝑡𝜃𝑓(𝑥 − 𝑡)𝑑𝑡 (𝜃 > 0)
∞

0
.  

From the theorem on the indefinite integral of uniform 

almost periodic functions it follows that 𝐹(𝑥) ∈ 𝐵 (see [5], p. 

29). For 𝜃 > 0, we introduce into consideration the quantity 

Ω(𝑓; 𝜃) = 𝜃 2lim𝑇→∞
1

2𝑇
∫ |∫ 𝑒−𝜃𝑡𝑓(𝑥 − 𝑡)𝑑𝑡

∞

0
|

𝑝
𝑑𝑥

𝑇

−𝑇
3

1/𝑝

.  

Note that the value 𝛺(𝑓; 𝜃) in the case when the spectrum 

of the function 𝑓(𝑥) ∈ 𝐵  satisfies conditions (3) is an 

analogue of the modulus of continuity. 

From the definition of almost periodic functions it 

immediately follows: 

Theorem 1. The almost periodic function 𝑓(𝑥, 𝑦)  is 

bounded, that is, there is a number 𝐶 = 𝐶(𝑓) such that for all 

𝑥 (−∞ < 𝑥 < ∞) 

|𝑓(𝑥)| ∈ 𝐶.  

Proof. Let us first determine, for example for 𝜀 = 1, the 

length 𝐿 = 𝐿(𝜀)=L(1). Function f(x) as a continuous function, 

bounded in closed intervals 0 ≤ 𝑥 ≤ 𝑙(1), let's say |𝑓(𝑥)| ∈

𝐶. We will prove that then at each point 𝑥0 the inequalities 

𝑓(𝑥0) ≤ 𝑐 + 1 are satisfied. Indeed, for any 𝑥0 there exists 

𝜏 = 𝜏(1) such that 0 < 𝑥0 + 𝜏 > 𝑙(1). Next we have: 

|𝑓(𝑥0)| = |𝑓(𝑥0) − 𝑓(𝑥0 + 𝜏) + 𝑓(𝑥0 + 𝜏)| ≤ |𝑓(𝑥0 +

𝜏)| + |𝑓(𝑥0) − 𝑓(𝑥0 + 𝜏)| < 1 + 𝑐 = 𝐶.  

Theorem 1 is proven. 
In order for the indefinite integral of a periodic function 

f(x,y) to also be a periodic function, it is necessary and 

sufficient that the Fourier series of the function f(x,y) does not 

contain a free term. However, for the function of an indefinite 

integral to be almost periodic, in general, the absence of a free 

term in the Fourier series of almost periodic functions is not 

sufficient. If the indefinite integral of uniform almost-periodic 

functions is a uniform almost-periodic function, then by 

Theorem 1. It is necessarily bounded. 

Theorem 2. If the indefinite integral of uniform 

almost-periodic functions is bounded, then it is also a network 

of uniform almost-periodic functions 

Proof. We can obviously limit ourselves to only real 

functions. By condition function 

𝑃(𝑥) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑥 + 𝐶,
𝑥

0
  

limited. Let us denote its upper bound by G. We will show 

that for every ε > 0  there is a positive number ε1 =

ε1,ε, 𝑓(𝑥)- such that every ε1  is an almost-period of the 

function f(x,y) there is \varepsilon – the almost-period of the 

function 𝑓(𝑥) . For this purpose, we choose two fixed 

numbers 𝑥1and 𝑥2 so that the inequalities are satisfied  

F(𝑥1) < 𝑔 +
𝜀

6
, F(𝑥2) > 𝐺 +

𝜀

6
  

Set |𝑥1 − 𝑥2| = 𝑑, |𝑦1 − 𝑦2| = 𝑑 and 𝑚𝑖𝑛  (𝑥1, 𝑥2) = 𝜉. 

Let us assume that in each interval of length 𝑙0 = 𝑙 .
𝜖

6𝑑
/, 

there is at least one 
𝜖

6𝑑
- almost-period of the function 𝑓(𝑡). 

Due to the fact that 𝑓(𝑥) ∈ 𝐵, there is such a number 𝑙0. 
Before proving P(x), we will show that in each intervals 
(𝛼, 𝛼 + 𝐿0)  𝐿0 = 𝑙0 + 𝑑 , there are values 𝑢1  and  𝑢2 
such that 

𝑃(𝑢1) < 𝑔 +
𝜀

2
,                   (4) 

𝑃(𝑢2) < 𝐺 −
𝜀

2
                  (5) 

In fact, we can choose the almost-period 𝜏 = 𝜏 .
𝜀

6𝑑
/ so that 

the numbers 𝜉 = 𝜏 lie in the intervals (𝛼, 𝛼 + 𝑙0). Then both 

numbers 𝑢1 = 𝑥1 + 𝜏, 𝑢2 = 𝑥2 + 𝜏 will probably lie in larger 

intervals (𝛼, 𝛼 + 𝐿0) and we will have: 

𝑃(𝑢2) − 𝑃(𝑢1) = 𝑃(𝑥2) − 𝑃(𝑥1) + 

+ ∫ 𝑓(z)𝑑z −
𝑢1

𝑢1
∫ 𝑓(z)𝑑𝑧 =

𝑥2

𝑥1
 = 𝑃(𝑥2) − 𝑃(𝑥1) +

∫ ,𝑓(𝑧 + 𝜏) − 𝑓(z)-𝑑z
𝑥2

𝑥1
≥ 𝑃(𝑥2) − 𝑃(𝑥1) − 𝑑

𝜀

6𝑑
> 𝐺 −

𝑔 −
2𝜀

6
−

𝜀

6
= 𝐺 − 𝑔 −

𝜀

2
  

But the inequalities 𝑃(𝑥2) − 𝑃(𝑥1) > 𝐺 − 𝑔 −
𝜖

2
in the 

sense of the numbers G and g is possible only if inequalities (4) 

and (5) are satisfied. 

We will now show that the number 𝜀1 =
𝜀

2𝐿0
 has the 

desired property, that is, that every 𝜀1almost-period 𝑓(𝑥) is a 

𝜀 almost-period 𝑃(𝑥) 

Let us show separately the validity of each inequality: 

𝑃(𝑥 + 𝜏) − 𝑃(𝑥) > −𝜀,                    (6) 

𝑃(𝑥 + 𝜏) − 𝑃(𝑥) < 𝜀.                      (7) 

To prove inequality (6), we choose in the intervals 

(𝑥, 𝑥 + 𝐿0) (x is an arbitrary real number) values 𝑢1  such 

that 𝑃(𝑢1) < 𝑔 +
𝜀

2
, 𝑃(𝑣1) < 𝑔 +

𝜀

2
. Then 
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P(𝑥 + 𝜏) − 𝑃(𝑥) = 

= 𝑃(𝑢1 + 𝜏) − 𝑃(𝑢1) + ∫ 𝑓(z)𝑑z −
𝑥+𝜏

𝑥
∫ 𝑓(z)𝑑z

𝑢1+𝜏

𝑢1
=

𝑃(𝑢1 + 𝜏) − 𝑃(𝑢1) + ∫ 𝑓(𝑧)𝑑z −
𝑢1

𝑥
𝑧 ≥ 𝑔 − .𝑔 +

𝜀

2
/ −

|∫ ,𝑓(𝑧 + 𝜏) − 𝑓(z)-𝑑z
𝑢1

𝑥
| > −

𝜀

2
− 𝐿0

𝜀

2𝐿0
= −𝜀.  

To prove inequality (7), we select in the intervals (𝑥, 𝑥 +

𝐿0) a point 𝑢2 , in which 𝑃(𝑢2) > 𝐺 −
𝜀

2
, 𝑃(𝑣2) > 𝐺 −

𝜀

2
. 

Then 

𝑃(𝑥 + 𝜏) − 𝑃(𝑥) = 

= 𝑃(𝑢2 + 𝜏) − 𝑃(𝑢2) + ∫ 𝑓(z)𝑑z −
𝑢2

𝑥
∫ 𝑓(z)𝑑z

𝑢2+𝜏

𝑥+𝜏
<  

< 𝐺 − .𝐺 −
𝜀

2
/ + ∫ 𝑒−𝜃𝑧|𝑓(𝑧 + 𝜏) − 𝑓(𝑧)|

𝑢2

𝑥,𝑦
𝑑𝑧 <

𝜀

2
+ 𝐿0 ∙

𝜀

2𝐿0
= 𝜀.  

Theorem 2 is proven. 

Theorem 3. If for a function 𝑓(𝑥) ∈ 𝐵, the spectrum of 

which satisfies conditions (2), the series converges 

∑ 2
𝜈(𝛾+

𝑞−𝛽

𝑞
)
𝛺(𝑓; 𝜆2𝜈)∞

𝜈=0 ,             (8) 

where 1 < 𝑝 ≤ 2,
1

𝑝
 +

1

𝑞
= 1, 0 < 𝛽 < 𝑞, 𝛾 > 0,  then series 

(3) converges. 

Proof. Let us show that for the function F(x) the Fourier 

series has the form 

∑
𝜃𝐴𝑘

𝜃+𝑖𝜆𝑘
𝑒i𝜆𝑘𝑥∞

𝑘=−∞ .  

Really, 

lim𝑇→∞
1

2𝑇
∫ 𝐹(𝑥)

𝑇

−𝑇
𝑒−i𝜆𝑘𝑥𝑑𝑥 = lim𝑇→∞

1

2𝑇
∫ 𝜃

𝑇

−𝑇
∫ 𝑒−𝜃𝑡𝑓(𝑥 − 𝑡)𝑑𝑡𝑒−i𝜆𝑘𝑥𝑑𝑥

∞

0
=  

= 𝜃 ∫ 0lim𝑇→∞
1

2𝑇
∫ 𝑓(𝑥 − 𝑡)

𝑇

−𝑇
𝑒−i𝜆𝑘𝑥𝑑𝑥1

∞

0
𝑒−𝜃𝑡𝑑𝑡 = 𝜃𝐴𝑘 ∫ 𝑒−(𝜃+𝑖𝜆𝑘)𝑡𝑑𝑡

∞

0
=

𝜃𝐴𝑘

𝜃+𝑖𝜆𝑘
.  

By virtue of the Hausdorff-Young inequality, the proof of which is also true for functions 𝑓(𝑥) ∈ 𝐵, we have 

Ω(𝑓; 𝜃) = 𝜃 2lim𝑇→∞
1

2𝑇
∫ |∫ 𝑒−𝜃𝑡𝑓(𝑥 − 𝑡)𝑑𝑡

∞

0
|

𝑝
𝑑𝑥

𝑇

−𝑇
3

1/𝑝

≥ 2𝜃𝑞 ∑ |
𝐴𝑘

𝜃+𝑖𝜆𝑘
|

𝑞
∞
𝑘=−∞ 3

1/𝑞

(1 < 𝑝 ≤ 2).          (9) 

Substituting 𝜃 = 𝜆2𝜈−1  into (9), we obtain 

2−
𝑞

2 ∑ |𝐴𝑘|𝑞 < Ω𝑞(𝑓; 𝜆2ν−1).2ν

𝑘=2ν−1+1
                                 (10) 

Using Hölder's inequality and (10), we have 

∑ |𝐴𝑘|𝛽|𝑘|𝛾 ≤2ν

𝑘=2ν−1+1 {∑ |𝐴𝑘|𝑞2ν

𝑘=2ν−1+1 }
𝛽

𝑞 {∑ 𝑘
𝛾𝑞

𝑞−𝛽2ν

𝑘=2ν−1+1 }
1−

𝛽

𝑞
≤  

≤ 2
β

2Ωβ(𝑓; 𝜆2ν−1) ∙ (2
ν𝛾𝑞

𝑞−𝛽 ∙ 2ν−1)

q−β

q
= 2

β

2Ωβ(𝑓; 𝜆2ν−1) ∙ 2
ν𝛾+

(ν−1)(𝑞−𝛽)

𝑞 = 2
β

2
+γ2

(ν−1)(𝛾+
q−β

q
)
Ωβ(𝑓; 𝜆2ν−1).  

It follows that 

 ∑ |𝐴𝑘|𝛽|𝑘|𝛾 ≤2ν

𝑘=2ν−1+1 С2
(ν−1)(𝛾+

q−β

q
)
Ωβ(𝑓; 𝜆2ν−1),                         (11) 

where the constant C depends on β and γ. Summing inequality (11) over ν, we obtain 

∑ |𝐴𝑘|𝛽|𝑘|𝛾 < 𝐶 ∑ 2
ν(𝛾+

q−β

q
)
Ωβ(𝑓; 𝜆2ν−1).∞

ν=0
∞
𝑘=2

                             (12) 

Since 𝜆−𝑘 = −𝜆𝑘, then taking 𝜃 = |𝜆−2ν−1| in inequality (9), we will have 

2−
𝑞

2 ∑ |𝐴𝑘|𝑞 ≤ Ωq(𝑓; |𝜆−2ν−1|) = Ωq(𝑓; 𝜆2ν−1).
−(2ν−1+1)
𝑘=−2ν   

Similarly, as was established (12), it can be obtained that 

∑ |𝐴𝑘|𝛽𝑘𝛾 < 𝐶 ∑ 2
ν(𝛾+

q−β

q
)
Ωβ(𝑓; 𝜆2ν).∞

ν=0
∞
𝑘=−2

                           (13) 
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The statement of Theorem 1 follows from inequalities (12) and (13). 

To formulate the following result, we introduce the following notation: 

𝐺𝑛 = *𝑘: 2−𝑛−1 ≤ 𝜆𝑘 < 2−𝑛+; 

𝐺−𝑛 = *𝑘: −2−𝑛−1 ≤ 𝜆𝑘 < −2−𝑛+; 

𝑀𝑛 = max𝑘∈𝐺𝑛
|𝑘| ;  𝜇(𝑎) = ∑ 1𝜆𝑘≥𝑎 .  

Theorem 4. Let 𝑓(𝑥) ∈ 𝐵 and its spectrum 𝛬*𝜆𝑘+𝑘=−∞
∞  satisfy conditions (1). If 

∑ 𝑀𝑛
𝛾∞

𝑛=1 *𝜇(2−𝑛−1) − 𝜇(2−𝑛)+
1−

𝛽

𝑞𝛺𝛽 .𝑓;
1

2𝑛/ < ∞,  

then series (3) converges. 

Proof. Substituting 𝜃 =
1

2𝑛 into inequality (10), we get 

∑ |𝐴𝑘|𝑞
𝑘∈𝐺𝑛

< 2
𝑞

2Ωq .𝑓;
1

2𝑛/.  

From here, using Hölder’s inequality, we have 

∑ |𝐴𝑘|𝛽
𝑘∈𝐺𝑛

𝑘𝛾 ≤ 𝑀𝑛
𝛾,𝜇(2−𝑛−1) − 𝜇(2−𝑛)-

1−
𝛽

𝑞 ∙ 2
β

2Ωβ .𝑓;
1

2𝑛/.  

Summing the last over n, we find 

∑ ∑ |𝐴𝑘|𝛽
𝑘∈𝐺𝑛

𝑘𝛾∞
𝑛=1 ≤ 2

β

2 ∑ 𝑀𝑛
𝛾,𝜇(2−𝑛−1) − 𝜇(2−𝑛)-

1−
𝛽

𝑞Ωβ .𝑓;
1

2𝑛/∞
n=1 .                    (14) 

If we take into account 𝐺−𝑛 = −𝐺𝑛 (this follows from the 

equality 𝜆−𝑘 = −𝜆𝑘) and the convergence of elements of the 

sets 𝐺−𝑛 и and 𝐺𝑛, then, similar to inequality (14), we arrive 

at the following inequality 

∑ ∑ |𝐴𝑘|𝛽
𝑘∈𝐵−𝑛

|𝑘|𝛾∞
𝑛=1 ≤ 2

β

2 ∑ 𝑀𝑛
𝛾,𝜇(2−𝑛−1) −∞

n=1

𝜇(2−𝑛)-
1−

𝛽

𝑞Ωβ .𝑓;
1

2𝑛/.  

The last inequality and (14) imply the statement of 

Theorem 2. 

Let the function 𝑓(𝑥) ∈ 𝐵 for some number 𝛼 (0 < 𝛼 ≤

1) satisfy the condition 

|∫ 𝑓(𝑥 − 𝑡)𝑑𝑡 
𝑢

0
| ≤ 𝐶|𝑢|1−𝛼 .          (15) 

Let us show that the following relation is valid 

Ω(𝑓; 𝜃) ≤ 𝐼(𝑡)𝜃𝛼 , 𝐼(𝑡) = 𝐶 ∫ 𝑒−𝑡𝑡1−𝛼𝑑𝑡
∞

0
,    (16) 

where C is a constant. Indeed, integrating by parts the inner 

integral on the left side of (16), we obtain 

|∫ 𝑒−𝜃𝑡𝑓(𝑥 − 𝑡)𝑑𝑡
∞

0
| ≤ 𝐶𝜃𝛼−1 ∫ 𝑒−𝑡𝑡1−𝛼𝑑𝑡

∞

0
= 𝐼(𝑡)𝜃𝛼−1  

that is, condition (15) implies relation (16). Consequently, the 

following corollaries follow from Theorems 3 and 4. 

Corollary 1. Let the function 𝑓(𝑥) ∈ 𝐵 satisfy condition 

(10) and 

∑ 𝑛
𝛾−

𝛽

𝑞𝜆𝑛
𝛼𝛽∞

𝑛=1 < ∞,               (17) 

then series (3) converges. 

In fact, since condition (15) implies inequality (16), then 

∑ 2
𝜈(𝛾+

𝑞−𝛽

𝑞
)∞

𝜈=1 𝛺𝛽(𝑓; 𝜆2𝜈) ≤ 𝐼(𝑡) ∑ 2
𝜈.𝛾+

𝑞−𝛽

𝑞
/∞

𝜈=1 𝜆2𝜈
𝛼𝛽

.  

Due to the monotonicity of the sequence Λ*λn+n=1
∞ , the 

convergence of the series on the right side of the last 

inequality is equivalent to the convergence of the series (17). 

Corollary 2. If the function 𝑓(𝑥) ∈ B satisfies conditions 

(15) and 

∑ 𝐺𝑛
𝛾,𝜇(2−𝑛−1) − 𝜇(2−𝑛)-

1−
𝛽

𝑞2−𝑛𝛼 < ∞,∞
𝑛=1

  

then series (3) converges. 

Note that if in inequality (16) we assume 𝛾 = 0, 𝛽 =

1, 𝑝 = 2, 𝜆_𝑛 = 𝛰(
1

𝑛
),  then for 𝛾 >

1

2
 the Fourier series 

converges absolutely. This result was established by N. P. 
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Kuptsov [5]. And for the Besikovich function, similar results 

were obtained in the works of Yu. Kh. Khasanov (see, for 

example, [8, 16]), but instead of the value 𝛺(𝑓; 𝑕),  an 

averaging module of order k was used 

𝑊𝑘(𝑓; 𝐻)𝐵𝑝
= 𝑠𝑢𝑝

𝑇≥𝐻
𝑠𝑢𝑝
𝑥∈𝑅

|𝑓𝑇𝑘(𝑥)|
𝐵𝑝

(H > 0, 𝑘 ∈ 𝑁),  

Where 

𝑓𝑇𝑘(𝑥) =
1

(2𝑇)𝑘 ∫ 𝑑𝑡1
𝑥+𝑇

𝑥−𝑇
∫ 𝑑𝑡2

𝑡1+𝑇

𝑡1−𝑇
… ∫ 𝑑𝑡𝑘−1

𝑡𝑘−2+𝑇

𝑡𝑘−2−𝑇
∫ 𝑓(𝑡𝑘)

𝑡𝑘−1+𝑇

𝑡𝑘−1−𝑇
𝑑𝑡𝑘.  

3. Materials and Methods 

The work uses methods of function theory and functional 

analysis of an approximative nature, methods for solving 

problems of harmonic analysis for functions, the theory of 

Fourier series, the theory of summation of Fourier series and 

methods of approximating functions by trigonometric 

polynomials. 

4. Results 

The results of the work are new, obtained by the author 

independently and are as follows: 

Sufficient conditions have been found for the absolute 

convergence of Fourier series of uniform almost periodic 

functions when: a) their spectrum has a unique limit point at 

infinity; b) their spectrum has a single limit point at zero, 

while as a structural characteristic of functions, a value 

constructed on the basis of the Laplace transform is used. 

5. Discussion 

The work is both theoretical and practical in nature. The 

results of the work can be applied in the theory of Fourier 

series and special sections of function theory. 

6. Conclusions 

The main scientific results of the work are as follows: 

Sufficient conditions have been found for the absolute 

convergence of Fourier series of uniform almost periodic 

functions when: a) their spectrum has a unique limit point at 

infinity; b) their spectrum has a single limit point at zero, 

while as a structural characteristic of functions, a value 

constructed on the basis of the Laplace transform is used. 
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