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Hidrosciences Department, Graduate College, Montecillo, Mexico

Email address:
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Abstract: In this article, an efficient algorithm is implemented in Mathematica for the exact calculation of Generalized
Harmonic Numbers (GHN). This is achieved through the combination of two methods. The first method is binary division,
where terms formed by the powers of the reciprocals of odd and even numbers are summed separately. The second method is a
recursive function that iterates the same sequence of operations until all calculations are completed. Within each cycle, the
algorithm processes half of the remaining terms, a feature that significantly improves its efficiency. The computer code is
notably concise, consisting of only 11 lines, depending on how they are counted. A remarkable event occurs when the argument
is a power of two, as the code condenses into a single line. The most distinctive feature of this algorithm lies in the fact that to
calculate the GHN for an argument ‘n’, it requires only the terms formed by the reciprocals of odd numbers. This provides a
clear advantage over algorithms that use the complete numerical sequence of the reciprocals of all numbers from 1 to n. An
intriguing aspect of this algorithm, is the unexpected discontinuity in the powers of two within the denominators of the common
factors across each layer. Contrary to expected, these do not form a continuous sequence from 0 to numberoflayers− 1.
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1. Introduction
When teaching recursive functions in elementary

mathematics, educators frequently rely on examples such as
factorials and Fibonacci sequences. However, in this work,
a slightly more intricate yet equally captivating and elegant
approach is delved: the combination of binary splitting and
recursion for computing Generalized Harmonic Numbers
(GHN). The GHN for a positive integer power p is defined
as follows:

H(n, p) =

n∑
k=1

1

k
p (1)

When p = 1, the celebrated harmonic numbers are
obtained. However, as the power p becomes a complex

number and n tends to infinity, these harmonic numbers
transform into the Riemann Zeta function. To underscore
the significance of this function, it suffices to mention the
German mathematician Bernhard Riemann (1826 – 1866).
Riemann postulated that the real part of all the complex
zeros of this function equals 1/2. While this conjecture
has been numerically verified, an exact mathematical proof
remains elusive. This intriguing proposition constitutes
the famous Riemann Hypothesis, widely regarded by many
mathematicians as the most renowned unsolved problem in
mathematics.

The first demonstration that the harmonic series diverges is
attributed to Nicole Oresme (circa 1320-1325 to 1382) [1]. A
similar proof was later obtained by Johann Bernoulli (1654-
1748)
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The harmonic series is an essential component of the Euler
constant, also known as the Euler–Mascheroni constant [2–3].
It is defined as follows:

γ = lim
n→∞

(Hn − lnn) (2)

The harmonic series manifests in various ways: in cases
of both convergent and divergent series; spanning all natural
numbers or only the odd numbers; with all positive terms or
alternating signs; involving even or odd positive powers, or
even negative powers. The literature on both the classical and
generalized harmonic series and the Euler constant is extensive
[4–9]. Below are some of the most notable examples.

1. In 1670, the Scottish mathematician James Gregory
(1638–1675) discovered the following series for π/4
[10]:

π

4
= 1− 1

3
+

1

5
− 1

7
+ . . . (3)

In 1674, the German mathematician Gottfried Wilhelm
Leibniz (1646–1716) independently discovered the
same series. Although this series is commonly known
as the Gregory-Leibniz series, it was originally found
by the Indian mathematician Nilakantha (1445–1545)
[10]. Legend has it that Leibniz once offered to
share his formula for calculating π/4 with anyone
who could demonstrate how to compute harmonic
numbers in return. This anecdote underscores Leibniz’s
interest in harmonic series and his willingness to share
mathematical knowledge.

2. Arguably one of the most celebrated problems in
the entire history of mathematics is the calculation
of the sum of reciprocals of the squares of natural
numbers. This problem had been under study by
Leonhard Euler (1707–1783). In 1735, Euler wrote,
“quite unexpectedly, I have found an elegant formula
involving the quadrature of the circle”, by which he
meant π. Euler demonstrated that:

π2

6
=

1

12
+

1

22
+

1

32
+

1

42
+ . . . (4)

In 1759, Euler published the general solution for
denominators raised to even powers [4]:

ς (2n) = (−1)n−1
(2π)

2n

2(2n)!
B2n (5)

Where B2n represents the Bernoulli numbers.
Surprisingly, a similar formula for ς (n) when n is an
odd number greater than one has not been discovered.
This chapter in the history of mathematics remains an
ongoing and fascinating tale [1, 4, 10].

3. An especially intriguing case involves negative integer
powers (where p < 0 in (1)). Recall that a negative
power in the denominator is equivalent to a positive
power in the numerator (and vice versa). Series such
as 1k + 2k + 3k + · · · + nk certainly do not converge.
However it is possible to compute the sum of the first n

powers using the formula of the German mathematician
Johann Faulhaber (1580–1635) [12]:

1k−1 + 2k−1 + . . . nk−1 =
“(n+B)k −Bk”

k
(6)

B represents the Bernoulli numbers, a well-studied
sequence. Here are some examples:

B0 = 1

B1 = 1/2

B2 = 1/6

B3 = B5 = B7 . . . all odd numbers = 0

B4 = B8 = −1/30

B6 =
1

42

B10 = 5/66

. . .

The quotation marks in the numerator expression “(n+
B)k−B(k)” should be interpreted as follows: (n+B)k

represents a binomial raised to the kth power, and
Bk denotes the kth Bernoulli number [12]. Bernoulli
numbers can be calculated based on preceding numbers
using the following method:

B2 − 2B1 + 1 = B2, where B1 =
1

2

B3 − 3B2 + 3B1 − 1 = B3, where B2 =
1

6

B4 − 4B3 + 6B2 − 4B1 + 1 = B4, where B3 = 0

Or by the recursive formula shown in (7).

Bk = 1− 1

k + 1

k−1∑
j=0

(
k + 1

j

)
Bj (7)

These numbers play a significant role in various
mathematical contexts, including number theory,
combinatorics, and special functions.
More recently, other methods have been proposed for
computing the sum of powers of natural numbers. For
example the following formula [11]:

n−1∑
k=0

k
p
=
B[p+ 1, n]−B[p+ 1]

p+ 1
(8)

Where B(p + 1, n) represents the n − th Bernoulli
polynomial of power p+1, whileB(p+1) is the (p+1)
Bernoulli number. The Bernoulli polynomials can be
computed using the following formula:
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B[p, x] =

p∑
k=0

(
p

k

)
Bkx

p−k (9)

4. As a final example of variations of the harmonic series,
there are two more formulas [4]:

1

13
− 1

33
+

1

53
− 1

73
+ . . . =

π3

32
(10)

1

15
− 1

35
+

1

55
− 1

75
+ . . . =

5π5

1536
(11)

These formulas were derived by Euler, but they differ
significantly from the GHN sequence in two aspects: the
sum involves reciprocals of odd powers of numbers, and
they also exhibit alternating signs.

It’s fascinating how certain mathematical topics garner more
attention than others. The Riemann zeta function, with its
deep connections to number theory and complex analysis, has
indeed captivated the interest of many mathematicians due to
its profound implications in understanding prime numbers and
the distribution of their multiples [13].

The Generalized Harmonic Number (GHN) might not
receive as much attention, but its significance lies in various
applications, particularly in fields like physics, computer
science, and even in some areas of economics. Its calculation
for finite values of n is crucial in various computational

algorithms and models. Sometimes, the popularity of
certain mathematical problems can overshadow others, but
each contributes its own unique insights and applications
to the broader landscape of mathematics. The pursuit of
understanding these less explored areas often leads to valuable
discoveries and advancements, enriching the field as a whole.

There are many algorithms for the exact computation of
harmonic numbers using binary splitting [14]. In a wider
approach this work will focus on the computation of GHN by
means of a recursive function that relies solely on the sum of
the odd terms of the type 1/(2k+1)p and the geometric series.

The exact computation of the GHN through direct
application of (1) is so straightforward and evident that,
apparently, no one has thought to explore the possibility of
reducing the number of terms to be considered. To achieve
this goal, two approaches were combined in this work: the use
of binary splitting and a recursive function, as explained below.

The results will be presented in two forms: a) A (short)
computer program written in Wolfram Research Mathematica
12.0, for the general case, and b) A single line formula for the
special case when the first argument of H[n, p] is of the form
n = 2m. This second case is interesting particularly when n
grows rapidly. For the benefit of those readers interested in this
problem, but with limited experience writing computer code,
the implementation of the program will be explained step by
step.

2. Program Deduction

1. The first step is to separate the terms whose denominator is a power of an odd number, from those terms whose
denominators are a power of even numbers, as shown in (12).

n∑
k=1

1

k
p ==



n−1
2∑

k=0

1

(2k + 1)
p +

1

2
p

n−1
2∑

k=1

1

k
p ; for n odd

n
2−1∑
k=0

1

(2k + 1)
p +

1

2
p

n
2∑

k=1

1

k
p ; for n even

(12)

2. Observe that the two sums in the right hand side (RHS) of (12):

n−1
2∑

k=1

1

k p and

n
2∑

k=1

1

k p (13)

are similar to the expression on the LHS, except for the upper bounds of the sums and the coefficients (1/2p) that can be
extracted from the sums as constant coefficients. This situation is the necessary condition to apply recursive functions.

3. Pay close attention to the definition of the upper bounds of the sums in the right-hand side of (12). Since this part of the
algorithm might not be evident, let us explain in detail how the upper bounds of the sums in the right-hand side of (12) are
defined as a function of n. (Later, it will be explained how the lower limits are defined).

a) If n is an odd number, then the upper bounds of both expressions in the first row of the RHS of (12) should be set
equal to (n− 1)/2,

b) If n is an even number, then the upper limit of the first of (12) should be set equal to (n/2− 1), while the upper limit
of the second of (12) should be set equal to (n/2).
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By proceeding in the described way, it is ensured that all bounds are integers, and that index k will never go outside the
range of k = 1, 2, 3, . . . n.

4. For the development of the central part of the program the use of specific numerical values is of great help. So consider,
for example. n = 69 and p = 3. Now the problem will be to calculate in a more efficient way the sum:

69∑
k=1

1

k
p (14)

5. After successively applying (12) the following result is obtained:

69∑
k=1

1

k
p =

34∑
k=0

1

(2k + 1)
p+

1

2
p

(
16∑
k=0

1

(2k + 1)
p +

1

2
p

(
8∑

k=0

1

(2k + 1)
p +

1

2
p

(
3∑

k=0

1

(2k + 1)
p +

1

2
p

(
1∑

k=0

1

(2k + 1)
p +

1

2
p

2∑
k=1

1

k
p

)))) (15)

6. After removing the parentheses and performing all the required operations, the following result is obtained:

69∑
k=1

1

k
p =

34∑
k=0

1

(2k + 1)
p+

(
1

2
p

) 16∑
k=0

1

(2k + 1)
p +

(
1

2
2p

) 8∑
k=0

1

(2k + 1)
p+

(
1

2
3p

) 3∑
k=0

1

(2k + 1)
p +

(
1

2
4p

) 1∑
k=0

1

(2k + 1)
p +

(
1

2
5p

) 2∑
k=1

1

k
p

(16)

7. Now it is time to calculate the values of the lower bounds in the sums of the RHS equations. The lower bounds should be
set equal to the upper limit of the following sum, plus unity. For instance, the upper bound in the second sum is 16. This
means that the lower bound of the previous sum should start at 17 = 16 + 1. But, what happens with the first 16 values
of the index k, that were transferred from the first to the second sum. They are incorporated into the second sum. The
coefficients are updated accordingly. (See (17)).

69∑
k=1

1

k
p =

34∑
k=17

1

(2k + 1)
p+

(
1 +

1

2
p

) 16∑
k=9

1

(2k + 1)
p+

(
1 +

1

2
p +

1

2
2p

) 8∑
k=4

1

(2k + 1)
p+

(
1 +

1

2
p +

1

2
2p +

1

2
3p

) 3∑
k=2

1

(2k + 1)
p+

(
1 +

1

2
p +

1

2
2p +

1

2
3p +

1

2
4p

) 1∑
k=0

1

(2k + 1)
p+

(
1

2
5p

) 2∑
k=1

1

k
p

(17)

8. The sequences within brackets are geometric series that can be calculated by means of any one of the following expressions:(
1 +

1

2
p +

1

2
2p +

1

2
3p + . . .+

1

2
n p

)
=

2
(n+1)p − 1

2
(n+1)p − 2

n p =
1

2
p − 1

(
2

p
− 1

2
n p

)
(18)
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9. Substituting (18) in (17) the following expression is obtained:

69∑
k=1

1

k
p =

1

2
p − 1

(
2

p
− 1

2
0 p

) 34∑
k=17

1

(2k + 1)
p +

1

2
p − 1

(
2

p
− 1

2
1 p

) 16∑
k=9

1

(2k + 1)
p+

1

2
p − 1

(
2

p
− 1

2
2 p

) 8∑
k=4

1

(2k + 1)
p +

1

2
p − 1

(
2

p
− 1

2
3 p

) 3∑
k=2

1

(2k + 1)
p+

1

2
p − 1

(
2

p
− 1

2
4 p

) 1∑
k=0

1

(2k + 1)
p +

(
1

2
5p

) 2∑
k=1

1

k
p

(19)

10. Equation (19) is correct, but its last sum seems to be out of context, since it would be better to express all the terms of
(19) as functions only of odd numbers. After some elaborate algebraic manipulations, a somewhat unexpected equality is
discovered, which seems to fit perfectly:

1

2
p − 1

(
2

p
− 1

2
(j-1) p

) 1∑
k=0

1

(2k + 1)
p +

(
1

2
j p

) lsp∑
k=1

1

k
p =

1

2
p − 1

(
2

p
− 1

2
(j-1) p

) 1∑
k=1

1

(2k + 1)
p +

1

2
p − 1

(
2

p
− 1

2
(j+lsp-1) p

) (20)

This particular equality applies when n = 69, number of loop j = 5 and lsp = 2.
11. Finally, after proper substitution, the following remarkable expression is obtained:

69∑
k=1

1

k
p =

(
1

2
p − 1

)( (
2

p
− 1

2
0 p

) 34∑
k=17

1

(2k + 1)
p +

(
2

p
− 1

2
1 p

) 16∑
k=9

1

(2k + 1)
p+

(
2

p
− 1

2
2 p

) 8∑
k=4

1

(2k + 1)
p +

(
2

p
− 1

2
3 p

) 3∑
k=2

1

(2k + 1)
p+

(
2

p
− 1

2
4 p

) 1∑
k=1

1

(2k + 1)
p +

(
2

p
− 1

2
6 p

) )
(21)

Equation (21) applies when n = 69, but similar expressions can be obtained for different values of n. Equation (21) can be
expanded for a better appreciation of its structure, as is shown in (22).

69∑
k=1

1

k
p =

(
1

2
p − 1

)( (
2

p
− 1

2
6 p

)(
1

(1)
p

)
+(

2
p
− 1

2
4 p

)(
1

(3)
p

)
+(

2
p
− 1

2
3 p

)(
1

(5)
p +

1

(7)
p

)
+(

2
p
− 1

2
2 p

)(
1

(9)
p +

1

(11)
p +

1

(13)
p +

1

(15)
p +

1

(17)
p

)
+(

2
p
− 1

2
1 p

)(
1

(19)
p +

1

(21)
p +

1

(23)
p +

1

(25)
p +

1

(27)
p +

1

(29)
p +

1

(31)
p +

1

(33)
p

)
+(

2
p
− 1

2
0 p

)(
1

(35)
p +

1

(37)
p +

1

(39)
p +

1

(41)
p +

1

(43)
p +

1

(45)
p +

1

(47)
p +

1

(49)
p +

1

(51)
p +

1

(53)
p +

1

(55)
p +

1

(57)
p +

1

(59)
p +

1

(61)
p +

1

(63)
p +

1

(65)
p +

1

(67)
p +

1

(69)
p

) )

(22)
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An analysis, even superficial, from the image of (21) reveals
the following:

a) There are no missing or repeating odd numbers in the
range of k = 1, 2, 3 . . . 69,

b) In (21) the number of terms (of the form 1/(2k+1)p) is
roughly half the numbers of terms calculated by (1), 35
vs 69.

c) It is important to highlight the presence of the common
factor: 1/(2p − 1). The same factor is also observed in
the study of the Riemann Zeta function, denoted as ζ(s)
[15].

3. Mathematica Computer Code
The computations involved when applying (21) can be

automated by a computer program for n > 2. To develop
such program, Wolfram Mathematica 12.0 was utilized due to
its availability, although alternative platforms could have been
equally suitable. It is only important that the selected language
could handle large integers, because the results of calculation
often are fractions with long (even very long) numerators and
denominators. Figure 1 shows the listing of the code.

Figure 1. Mathematica code.

4. Special Case: The Argument Is of the Form n = 2m

When the argument n is of the form n = 2m (m is a positive integer) (21) and its expansions to greater numbers can be
significantly compacted, remaining as follows:

2n∑
k=1

1

k
p =

(
1

2
p − 1

) (2p
− 1

2
n p

)
+

n−2∑
i=0

(
2

p
− 1

2
i p

) 2
(n-i-1)

−1∑
k=2

(n-i-2)

1

(2k + 1)
p

 (23)

5. Discussion

Many mathematicians, both professionals and amateurs,
have long been unsuccessfully attempting to find a closed
formula to compute the Generalized Harmonic Numbers
(GHN) solely based on n (the number of terms to be summed),
similar to, for example, the formula used to calculate the sum

of the cubes of the first n natural numbers: ((n(n + 1)/2)2.
Equation (23) constitutes a step in the desired direction as
it computes the GHN solely based on the reciprocals of odd
numbers which constitute half of n.

Probably the most amazing feature of the model is the fact
that it is possible to calculate the GHN using only the odd
numbers. This confers a notable advantage to the approach
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over (1), which utilizes all numbers, even and odd. However,
this advantage comes at the expense of calculating specific
coefficients, one per layer, as explicitly demonstrated in (22).
The coefficients are of the form (2p − 1/2p i), where p is
the power of the GHN and i is the number of layer, varying
from zero for the first layer, (which is the largest layer and
the corresponding coefficient is 1), up to the total number of
layers. In the given example, it would be expected that i to
vary this way: 0, 1, 2, 3, 4, 5. However from 4 the Index
jumps to 6, missing past the 5. This is not an error; the same
behavior was observed in all numerical examples carried up.
Another unexpected feature of this model, is the appearance of
the common factor of the form: 1/(2p − 1).

In order to get an idea of the efficiency of the proposed
algorithm in comparison with the algorithm represented by
(1), observe that the computational complexity of the latter
algorithm is proportional to n, while with the proposed
algorithm such amount is roughly n/2 + log2(n). As an
example of computation time for p = 3 and n = 4096 the
following results were obtained:

Table 1. Processing times.

Formula Time (seconds)

(1) 0.0349916

Program hgen[4096, 3] 0.0264583

(10), with n = 12, so that 212 = 4096 0.0220535

6. Conclusion
A computer program and a compact formula for the exact

calculation of the GHN have been developed. The computer
program is based on two methods: 1) Binary splitting that
separates the odd and the even terms, and 2) a recursive
function that operates on half of the remaining terms. The
number of calls of the recursive function is roughly log2(n)).
This feature gives an advantage over the direct computation
with (1), which utilizes all numbers, even and odd. A
disadvantage of the proposed algorithm, is the necessity to
compute certain coefficients for each one of the layers into
which n has been subdivided (roughly log2(n))), as shown in
(22).

Several questions remain unanswered that will require
additional research. First of all, the possibility to calculate the
GHN taking into account the even terms only (instead of the
odd terms). A second question is to investigate the meaning
of the common coefficient 1/(2p − 1) that appears also in the
Riemann Zeta function. Finally, why the penultimate layer is
bypassed in the analysis.
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