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Abstract: Through of a cohomological theory based in the relations between integrating invariants and their different 
differential operators classes in the field equations as well as of functions inside of the integral geometry are established 
equivalences among cycles and co-cycles of the closed sub-manifolds, line bundles and contours of the space-time modeled as 
complex Riemannian manifold obtaining a cohomology of general integrals useful in the evaluation and measurement of fields, 
particles and physical interactions of diverse nature in field theory. Also are used embeddings of cycles in the complex 
Riemannian manifold through of the dualities: line bundles with cohomological contours and closed sub-manifolds with 
cohomological functional to build cohomological spaces of integrals as solution classes of the corresponding field equations. 
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1. Introduction 
To can to obtain a cohomology of general integral 

operators that determines complex analytic solutions through 
classes of a cohomology that born from the −∂ cohomology 
is necessary to use a holomorphic language [1] with the 
purpose of obtain holomorphic forms that involve exact forms. 
In fact, this methodology is a way of so many that suggests the 
use of complex hyper-holomorphic functions in approach of 
functions in complex analysis, although using fibrations on 
some quaternionic algebra. The holomorphic forms required 
in this language are good to express the integral of complex 
vector field as integral of line it has more than enough lines 
bundles and hyperplanes like for example, having more than 

enough lines and hyperplanes respectively in ,n
CP and ,n

C

visualizing these fields like holomorphic sections of complex 
holomorphic bundles of fibrations MX → . 

The −∂ cohomology exists naturally in coverings of Stein
MX → , like holomorphic forms. Then the integral can be 

expressed on spaces ,δM and z∆ [2, 3], that are lines and 

hyperplanes of ,n
CP and ,n

C and that as such, they are 

“integral orbits” of the complex manifolds ,/ LGM =  and 

,/ ΣΓ=∆ belonging to a −∂ cohomology in holomorphic 
language. 

The cohomologies of functional and functions respectively, 
can be constructed through the complex cohomology of 
hyper-spaces they are generalizable for vector fields in the 
same sense of the Stein coverings and therefore of the −∂
cohomology. Then the following question arises, how to 
establish an isomorphism of cohomological classes for 
functions, functional and vector fields inside the holomorphic 
context possible?  

Is possible to determine a cohomological theory of integral 
operators that establishes equivalences among these objects 
and the geometrical objects of closed submanifolds, bundle of 
lines and Feynman diagrams? 

Is possible that everything can decrease to a single 
cohomology of general integrals on contours or cohomology 
of generalized functional? 

Before, to give an answer to the previous questions, we give 
some preliminary definitions that we will use to fix concepts 
and outlines of the wanted general theory. 

Let ,M  be a complex Riemannian manifold and let ℑ , be 
a sheaf of germs of holomorphic sections of a vector 
holomorphic sheaf. 
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Def. 1. 1. We say that a space ),,M(H ℑ•  is an integral 

operator cohomology (in the sense of the integrals of the field 
equations) of those −∂ equations, if this is a solution class or 
general integral of these equations in M  [2, 4].  

Def. 1. 2. An integral as generalized solution of a −∂
equation is a realization of an irreducible representation of a 

−∂ cohomology of complex closed submanifolds [3, 5]. 
If the irreducible representations are unitary then we have a 

complex −2L cohomology or −∂ cohomology with 

coefficients in the space 2L . The integral operators belonging 
to their integral operator cohomology are those of the complex 
Fourier analysis.   

In the case of a real reductive Lie group, the generalized 
integrals come determined by their orbital integrals. Let G , 

be a real form of CG , and P , their parabolic subgroup. The 
generalized integrals in G , are the integrals on open orbits of 

the generalized flag manifold PG /C .  
Of this way, if ),1( nUG = , and the generalized flag 

manifold is then n
P , then the group of positive lines +P , 

(which is an −),1( nU orbit) is an open orbit in )(CP
n . In this 

case the integrals of line are of John type [1]: 

,p,f)p( 4
)(L∫ ∈∀= ⊂ R

CP
nφ      (1.1)1 

The general integral in this case comes given by the twistor 
transform on the corresponding homogeneous lines bundle, 
that is to say, 

)),2n(O*,(H))2n(O,(H 11 −→−− ++
PP     (1.2) 

Through the twistor transform like intertwining operator of 
induced tempered representations on a −∂ cohomology we 
have representations of )2,2(SU , that are orbits of a 

fundamental unitary −) ,( Kg module [4]2. Then we can to 

assign a vector bundle of lines with a unitary representation 
that classify it. 

The concepts of general integral and generalized integral 
are different, because one refers to the whole class of solution 
cohomology of those −∂ equations about a complex analytic 
manifold and the other one refers to the classes of solution 
cohomology on cycles or co-cycles of the complex manifold 
[1, 2]. 

Another example in the sense of recovery of a functions 
space mainly the space M , is the recovering of real functions 

in the space n
R , through values of certain integral operators. 

Such is the case of the formula of )(xf , recovered on n
R , 

                                                             

1 Solutions to the ultra-hyperbolic wave equation.  
2 These orbits possibly are orbits of the unitary group related with electrodynamics 
and torsion in the space-time. 

),(]d)}x,(){,(f[c)x(f n ζωλξλλξ∫ ∫
Γ

−
+∞

∞−

∧ −=    (1.3) 

Where the integral on λ , is understood in terms of their 
regularization (roll that carries out the Hilbert transform). The 
constant c , depends on the parity of the dimension of the 

space n
R , where was carried the tomography [1]. 

To answer the first question, we need a structure of 
complexes that induces isomorphism in an integral operator 
cohomology such and as we want. 

Def. 1. 3. A covering of Stein is a set of Stein manifolds 

δM , and zΞ , of the corresponding fibers MX → , and 

Ξ→X , of the double fibration [2]. 
Let us consider the complexes given in [2], and let us 

consider the structure defined by a Stein covering given by the 
set of open }{M δ , and }{ zΞ , in the topology 

{ },)M(MXM),z( zX ∅≠Ξ∩⇔Ξ×⊂Ξ×∈= δξτ     (1.4) 

Then a complex in X , is the space such }{ r
hΩ , that for 

any complex }{ rΩ , in a corresponding long succession 

having that 

 },{}{ rr
h ΩΩ �                (1.5) 

that is to say, all the subcomplexes rhΩ , of the complex rΩ . 

Then the integral operators cohomology ),,( ℑ• MH in a 

complex manifold M , is that whose complexes conform a 
holomorphic structure that induces (in the corresponding 
integral manifold) a generalized according structure of 
integral submanifolds. 

The integral submanifolds represent solutions of those −∂
equations in cycles of M . The integral submanifolds are the 
corresponding cycles of M , low the integral operators of 

),( ℑ• MH . 

For example, if we take the complex manifold M , like a 
manifold of rational curves zE , about a twistor manifold T  

(where should understand each other this manifold T , like 
the manifold of integral submanifolds (locally)) this comes 
from a projective structure of their line of zE , guided 

according to the vectors in MTz , that corresponds there to the 

sections of a normal bundle zEN , of the curve (infinitesimal 

deformations to the curve) that is to say, these conform the 
holomorphic structure that will induce the corresponding and 
according structure (that is to say, in the corresponding 
integral manifold). In this case the generalized according 

structure of integral submanifolds is the −)(kV conformal 
integrable structure given by T . The integral operators 
cohomology in this case is the given by the family of rational 
curves. 

The outline twistor in this case helps, if is necessary, to 
establish the deformation of the integral curves of the vector 
bundle of lines )(kO . In such case the integral perators 
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cohomology is )).(,(),( 0 kOHMH T=ℑ•  

This example is interesting not only for the fact of to be 
defining the integral operator cohomology that defines 
“integrals” to M , under conditions of their proper complex 
differentiable structure, also for the fact of satisfy the 
integrability condition for the equation of the Weyl tensor 

,0=ijW  where ))(,(0 kOH +T  (respectively ))(,(0 kOH T ) 

are the solutions or integrals of 0=+W  (respectively 

0=−W ) [6, 7]. 

2. Dualities 
The possible dualities that we examine to conjecture level 

will be the corresponding to line bundles with cohomological 
contours and closed submanifolds with cohomological 
functional. Before, we will give a theorem on integral operator 
cohomology and their equivalences that generates. 

Theorem (F. Bulnes) 2. 1 [8]. In the integral operator 

cohomology ),( ℑ• MH , that has more than enough complex 

manifolds the following statements are equivalent: 
a) The open δM , and z∆ , are −G orbits opened up in 

X , and their integrals are generalized integral for M , 
b) Exists an integral operator T , such that 

}equationsker{),( −≅ℑ• DMH T , 

c) ∪M
zM πδ = , and ∪∆

=∆ πzz
, ( ))V(O,U(H),M(H 11n −−• ≅ℑ ρ ). 

Proof. [8]. 
The integrals on the open −G orbits satisfy the −G

invariants integration 

,)f()(fd r

H/G

1r
H/G ϕϕ ∫∫

−Φ=Φ �       (2.1) 

where we have that the generalized orbits in X , give us a new 
cohomological class that is related with the previous for an 
integral operator T , defined for 

))(,())(,( 1 ντν ℑΞ→ℑ −•• HMH        (2.2) 

and such that 

}/ equationsker{))(,( 1 HGDH T −≅ℑΞ −• ντ    (2.3) 

The implications are happened in the correspondence of the 

cycles of ),( ℑ• MH , and equations}ker{ −D , only exists as 

integral of those −∂ equations [9] in M , ( M  integrable) if 

.0)( =jRM
I

 

Also to consider M =U Σ∈σ ,σV and Ξ =U Γ∈γ ,γV
then for −n dimensional planes of a Grassmann manifold 

,,1 nG one has that δM =UM ,/ zπ    
 

and z∆ = U ∆

,/πz  
 
that which defines cycles in the cohomological space 

of dimension ),1( −n with .MU ⊂  

Then since each one of these −G orbits exists like a −K
orbit of the space of classes ,/ KG  with Nijenhuis curvature 
tensor then each flag submanifold is a −K orbit of the vector 
holomorphic −G bundle of the −n2 dimensional irreducible 
symmetrical Riemannian manifold )(MJ . Their integrals are 

orbital and their extensions to δM , and z∆ , are generalized 

integrals. 
One proposition as a preliminary conjecture in a first study 

in integral geometry considering cycles inside a −∂−− )1(n

cohomology is the following: 
Proposition 2. 1. The −∂−− )1(n cohomology with 

coefficients in a complex holomorphic bundle of M , is a 
cohomology of hyperlines and hyperplanes. 

Their demonstration is based on tomography on n
C , and 

integral operators −∂ cohomologies on n
C . 

Other conjecture can be: 
Proposition 2. 2. The integral of contour are generalized 

functional in a cohomology of contours (cohomological 
functional). 

We give the following definition. 
Def. 2. 1. A cohomological functional of a given 

cohomology ),,sing( rMMH Ω−•
 is an integral operator 

cohomology in the way ),,sing( rMMH Ω−• where Msing , 

is the twistor space ofM  (class to which belongs, for 
example, the Feynman integrals). 

Let us consider p , and differential −q forms of the 

cohomologies about the complex manifolds X , and Y , 

respectively, to know, ),,( SXH p∈α and ),( TXH p∈β . 

Let us consider their product surrounds given for 

),,( TSYXH qp ⊗∩∈∪ +βα  and the connecting map in 

the sucession of Mayer-Vietoris: 

),,(),(:* 1 TSYXHTSYXH qpqp ⊗∪→⊗∩∂ +++    (2.4) 

We consider for the inner product of α , and β , the 

relationship 

),(* βαβα ∪∂=•              (2.5) 

This description of the inner product has been very used in a 
new development of the cohomology for twistor diagrams 
begun by [6, 7]. This new method is almost opposed to the 
procedure that we want to use in the unification of contour 
integral on diagrams, in this respect, of the Feynman integral, 
we want to ensemble a Feynman diagram for applications of 
the product “cup”. The interior edges of a Feynman diagram 

are taken again as elements of groups 0H  (such extra 
elements have to be abandoned in a cohomology, like for 

example, )),(,( 1 ντ ℑ−• MH  and the interior edges shape the 

fields (assuming that they are elementary states) in several 

groups 1H . If f , of these elements exists 1H , this new 

procedure determines an element of the cohomology 

),,'( dfH Ω−Π ℓ  where 'ℓ , is the union of all the subspaces 
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defined by internal edges, always with the subspaces ,1
CP  

on those which elementary states f , are singular. By the 

theorem 2. 1, incise b), the map exists 

),,'(),'( Cℓℓ −Π→Ω−Π +dfdf HH      (2.6) 

Using the description of Dolbeault of the first group, 
forgetting the bi-graduation ),( fd , and reminding only the 

total grade fd + . A description of Cĕch of this map is used 

for the evaluating of twistor cohomology. In our case, we will 
only use the duality of Poincaré to know in what moment of 

the evaluation of an element of ),,'( Cℓ−Π+dfH one can 

need a contour in ).,'( Cℓ−Π+dfH  

This contour “cohomologic” is easy to relate one traditional 
in ),( Cℓ−ΠdH , so that the map exists 

),,(),'( CC ℓℓ −Π→−Π+ ddf HH        (2.7) 

giving for iteration the constant map of Mayer-Vitoris (in 
homology) f , times, one for each field. 

All this is worked easily for the diagram product to climb, 

and can demonstrated that ),,(8
Cℓ−ΠH  and that the image 

of the generator of this group low two maps of Mayer-Vitoris 
is the usual contour for the product to climb. This affirms that 
only exists a cohomological contour for the product to climb 
(like is being expected) and suggests a method for verified 
contours to observe which cohomological belong to them. 

Def. 2. 2 (hyperfunction). A hyper-function on nR , is an 

element of the −∂−− )1(n cohomology ),,()1( ℑ− MH n  with 
nnM RC /= . 

Proposition 2. 3. The general line integrals are functional on 
archesγ , in geometry of conformal generalized structure. 

Proof. Consider a vector holomorphic −G invariant sheaf 
and their corresponding bundle of lines associated to those 

−)0,(r forms on the topological vector space. Then the 

integrals on the fibers of the vector holomorphic sheaf are the 
integral of line on the cycles of the sections ,X  of the vector 

sheaf given by rX Ω∈∀∫ • δδ
γ

, , (where ,rΩ , is a complex 

of the defined in (1. 4)). Then the holomorphic structure that 
constitutes these complexes induces (in the corresponding 
integral manifold) a conformal generalized structure of 
integral sub-manifolds where the archesγ , are local parts of 

integral curves of the fibers of the vector sheaf of line bundles. 
In other words ),( xi VΣ∈∀γ

 
exists locally an integral 

submanifold S , with Sz∈ , such that ,STz=γ  and 

)( wiw VST Σ∈ , .Sw∈∀  Then the line integral can be written 

in this generalized conformal structure as: 

T∈Ω∈∀= ∫∫ •• ffX r

STz

,, δδδ
γ

      (2.8) 

where T , is the domain (in the local structure where the 

integral submanifold S , exists) , iVn += RT  where V , is a 
cone, not necessarily convex (so that has applicability on the 
fibers of the sheaf of line bundle). The idea is to define the 
expression δ•f , inside the context of the line integral in 

such way that the values of f , on the arch γ , are values of 

f , as a hyperfunction represented this as a variation of 

holomorphic functions )(zf , in a Stein submanifold δM , 

such that T⊃δM . 

Then the sesquilinear mating of the hyperfunction 
corresponding of , and the function , is an contour integral and 
for proposition 2. 2, a generalized functional in the 

cohomology ).,(1
Cℓ−ΠH  Indeed, let , iVn += RT  be the 

domain tube where the cone V , is not necessarily convex. 
This cone γδ VV Σ∈= ∪ , in the conformal generalized 

structure, where the γV , is the convex maximal sub-cone in 

V . Consider to our manifold ,M  as a complex manifold. 
The idea is that holomorphic form required in this language is 
good to express the integral of a complex vector field as a line 
integral having more than enough line and hyper-planes 
bundles as for example; when we had more than lines and 

hyper-planes respectively in n
RP , and n

C , visualizing 
these fields as holomorphic sections of complex holomorphic 
bundles of fibers MX → . In ∆ , exist such −q

dimensional cycles such that γγδ VV ∈= ∪ . Let 

, δiVn += RT
 
with Stein covering  =T U γδ∈ .δT  Let us 

consider the vector cohomology ),()( ℑ T
qH , using this 

covering. Then for the theorem 2. 1, incise b), a canonical 
operator exists (of boundary values forf ) defined by 

 ),,/(),( )()( ℑ→ℑ  RC T
nnqq HH       (2.9) 

Then the integral can be expressed on spaces δM , and z∆ , 

that are affine to lines and hyper-planes of nRP , and n
C , and 

that as such these are orbital integrals of the complex 
manifolds LGM /= , and ΣΓ=∆ / , belonging to a −∂
cohomology in holomorphic language. In particular if 

qdz
T

Ω∈),( δδφ , has regular values nz R∈∀ , then 

,,),()( nzdzx R∈∀= ∫γ δδφφ         (2.10) 

Then in the integral submanifold this M , takes the form 

,)()(),( ∫∫∫ ==•
γγγ

δδδφ zfzfdzGX      (2.11) 

But these integrals are contour integrals belonging to a 

cohomology ),,(1
Cℓ−ΠH  of a cohomological functional. 

Then the integrals in of the right-handed of (2. 11) are 

functional inside the integral cohomology ),/()1( ℑ−
 RC

nnnH . 

The propositions 2. 2, and 2. 3, establish that the structure of 
complexes to the suitable integral operators cohomology is 
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now that to induce isomorphism in other object classes of the 
manifold M . Then arise the question; exist some procedure 
inside the relative cohomology on M , that we can use to 
induce isomorphism of integral operator cohomology? 

Consider a closed subset (or relatively closed) E , of a 
space X , and a sheaf O , on X . In sufficient form we 
choose an open covering Y , of , with a sub-covering 'Y , of 

./ EX  A relative Cĕch co-chain is a Cĕch co-chain with 
regard to the covering Y , subset to the condition that this is 
annulled when we restrict to the subcovering 'Y . Then one 
has the exact sucession of groups of relative co-chains 

),,\(),(),(0 OOO EXCXCXC p
E

pp
E →→→    (2.12) 

where ),( OXC p
E , is the group of relative co-chains. The 

inherent relative co-chain to a co-opposite operator of the 
ordinary co-chains and the limit has more than enough fine 

coverings of the homology of the complex ),( OXCE
• , they 

give the groups of relative cohomology ),( OXH p
E  . In this 

case is not necessary to take the limit since ahead of time one 
has the relative theorem of Leray, which establish that if 

,1,0),( ≥= pXH p O for each set U , in the covering Y , 

then this covers enough to calculate the relative cohomology. 
The long exact succession cohomology of the exact short 

succession defined up determines the exact succession of 
relative cohomology is: 

......),(

),\(),(),(0
1

000

→→

→→→

O

OOO

XH

EXCXHXH

E

E
   (2.13) 

where the maps of the cohomology has more than enough X , 
to the given on EX \ , where these are their restrictions. 

Other important result on the relative cohomology is the 
division theorem which establishes in shallow terms that the 
relative single envelope cohomology depends the immediate 
neighborhoods of the embeddings of E , in X . With more 
precision, giving an open subset XX ⊂' , such that 

 , )'\( ∅=∩ EXX a canonical isomorphism exists 

),,'(),( OO XHXH n
E

n
E =             (2.14) 

This is the form of inducting isomorphism. IIn our case the 
covering Y , is a Stein covering where the integral operator 

cohomology should exist as ),,()1( ℑ− MH n
 which we want. 

Why? Because the natural place where an −∂ cohomology 
exists is in the Stein covering, and is that we want to obtain the 
solutions of partial −∂ equations.  

Let us apply the relative cohomology to cohomologies of 
contours, because we want generalized functionals as 
solutions of the differential equations [5, 7]. 

Let us consider the following general procedure due to 
Baston [6], for the exhibition of all the cohomological 
functional on a given collection of fields, procedure required 
for the evaluation of boxes-diagram, that is to say, the 
obtaining of the elementary states ),4,3,2,1( =iiφ  of the field 

through a local cohomology. 

Through consider a complex manifold YX ∪ , the closed 
subsets XE ⊂ , and YF ⊂ , and elements 

),,( OEXH p −∈α  and ),,( QFYH q −∈β  we can use the 

maps connecting in the exact successions of relative 
cohomology 

,),(

),\(),(),(0
1

1

…→→

→→−→→
+

+

O

OOO

XH

EXHEXHXH
p

p
E

p
r

p

(2.15) 

and the corresponding to YF ⊂ , 

,),(

),(),(),(0
1

1

…→→

→→∪→→
+

+

Q

QQQ

YH

YHFYHYH
q

q
F

q
r

q

   (2.16) 

to obtain elements αr , and βr . Then the product surrounds 

on relative cohomology 

),,(),(

),(

),(:

2

1

1

QOQO

QO

QO

2qp ⊗∪→⊗∪

→⊗∩−∪

→⊗∪∪

++++
∩

++

++

YXHYXH

FEYXH

YXH

qp
FE

qp

r
qp

  (2.17) 

and this demonstrates that 

),(1 βαβα rrr ∪= −•    (2.18) 

Since the interactive vector fields X , are given as elements 

of groups 1H , defined on differential spaces, we need the 
vector product in relative cohomology, that is: 

),,(),(),(: 1
,

11 QOQO ⊗×→⊗× ++++ YXHYHXH qp
FE

Q
F

p
E     

(2.19) 

Strictly speaking QO ⊗ , could be OO YX ** ππ ⊗ . As 

before, βα rr × , this in the image of the connecting map ,r

in 

),,(

),(),(
2

22

QO

QOQO

⊗×→

→⊗×→⊗×−∪
++

++
×

++

YXH

YXHFEYXH
qp

qp
FE

r
qp

 (2.20) 

with 

)),,,()(( 11 rqprrr −−• ∈×= νβαβα       (2.21) 

Then arises the technical question, how to relate 
cohomology of contours like the one given by 

),,'( Cℓ−Π+dfH  with an integral operator cohomology of 

vector fields? 
To answer there is this question, is necessary consider the 

complex components ,iii UPE −=
 
with fi ,,2,1 …= , 

being iP , ,P  or *,P  and ,iU
 
open subsets of iP , 

belonging to the correct cohomology for the Penrose 

transform on ))(-,(1 rOUH i . 

The idea is to obtain an image of the vector field , like an 
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element of a cohomology has more than enough homogeneous 
bundles of lines in each component of the field (that is to say, 
to determine a cohomology for each line integral of each 
component of the field X ). Beforehands can be seen in the 
next time that this will be possible with the one Penrose 
transform which is one of these integrals. Let 

.1 fFFE ××= ⋯
 
Let us denote for iL , a projective line 

contained in iF , and let .1 fLLL ××= ⋯
 
For vector fields 

we have an element in the cohomological group 

),)(-,())(-,( 1
11

1
ff rOUHrOUH ⊗⊗…  and for results of 

relative cohomology and twistors projective diagrams [6, 7], 
the product point for the integral of line for all these fields 
doesn’t get lost, and for the Künneth formula for relative 
cohomology one has that 

),)(-,())(-,())(-,( 11
21

11
1 rOUHrOUHrOUH f

Eff ≅⊗⊗…   (2.22) 

where ),,( 1 frrr …= . Each linear continuous functional on 

these fields is therefore an element of the group of compact 

relative cohomology )).(,,(2 rOEH f
E −−ΠΠ It is necessary 

to clarify that (2. 22) and the group )),(,,(2 rOEH f
E −−ΠΠ  

are not in general dual. 
Now then, considering this cohomology of vector fields, is 

needed to decide how the interior of a diagram chooses some 
of these functional. For we remind it the interior of a diagram 

like the holomorphic kernel ).)( ;(,3 -rOHh qf
E O−Π∈  For 

example, in the scalar product (spin zero) 
)).22(;()/( ,62 −−−Π∈∧∈ OHZWDZDWh q Oα

α  While in the 

box 

)).2222(;(

)/(

0
,6

0

−−−−−Π∈

∧∧∧∈

OH

ZYXYZWZWDZDYDXDWh

q O

δ
δ

γ
γ

β
β

α
α

 

q , is usually zero. In these cases h , can be in principle 

calculated by integration outside of the interior vertexes of the 
diagram twistor, although this not always simple. If q , is not 

null, will the determination of h , in any moment be clear. 
What to make in this respect? 

Let us appeal to the complex cohomology and let us 

consider an element ). ,(-0, EH qf ∪−Π−Π∈ OO
C

α  Then 

).)(; ,(,3 rO EHh f f −∪−Π−Π∈∪ OO
C

α  This is a induced 

map by the inclusion 

),)(; ,())(; ,(: ,3,3 rO EHrO EHi f ff f −−ΠΠ→−∪−Π−Π
CC

OO   (2.23) 

where such , is a functional chosen for the interior of the 
diagram (that is to say h) like is required. But this is difficult 
to visualize to as a contour. For it, let us notice first that the 
embedding of the constant sheaf C , in )(-rO , induces a 

mapping 

)),( ,();,( -rOE;-HEH q-fq-f ΠΠ→∪−Π−Π
CC

ROO   (2.24) 

and second place the cohomology groups 
),,(5 EH qf ∪−Π−Π+ OO

 
and 

);,( R
C

EH q-f ∪−Π−Π OO , are isomorphic. Now is 

necessary to insist in that is in the image of the map (2. 4) 
which will take place to that can be visualized as a contour. 
This object when is a contour, we call to )( hi ∪α , the 

functional “associated to” the kernel h , and we affirm 
strongly that this doesn’t exist if O⊂E , because then 

,0),(5 =∪−Π−Π+ EH qf OO  that it is expected. We can 

refer to this problem as impossible, since necessarly O≠E  , 
so that the field chosen in this cohomology is the most general 
thing possible. Because the idea is to obtain an image of the 
vector field X , as an element of a cohomology has more than 
enough homogeneous bundles of lines in each component of 
the field. Let us notice that our defined fields are perfectly 
general. In fact, if the vector fields are then elementary states 

,ii LF =  and F , are similar to a closed submanifold Λ (of 

real co-dimension ,4 f with normal directional made). Using 

the isomorphism of Thom has that: 

),,()( 5 Λ∪−Π−Π≅−Λ ++ OOO qfqf HH    (2.25) 

which is deduced that the visualized contours are the given in 
)( O−Λ+qfH . If the vector fields are not, then elementary 

states to all the length of ),,(5 EH qf ∪−Π−Π+ OO
 
is 

homotopic to ),( Λ∪−Π−Π OO , which establishes their 

generality in homology. 
Then we can enounce that if ),( E∪−Π−Π OO , is 

homotopic to ),( Λ∪−Π−Π OO , then the functional on 

),)(,())(,( 1
11

1
ff rOUHrOUH ⊗⊗…

 
associated to the kernel 

),)( ;(,3 -rOHh qf O−Π∈
 
are given by elements of the 

homology group )( O−Λ+qfH . Now then, which of these 

cohomologic contour is? 
A class of cohomologic contours is the classic or traditional 

contours. However carrying out extensions of these through 
twistor geometry, we can consider cohomologic contours to all 
the image elements of the generator of ),,(4 Cℓ−ΠfH

 
under 

two mappings of Mayer-Vietoris. Then, can be extended this 
particular theory of contours to the spin context? What affirms 
in this respect the hyper-complex analysis? 

Through the definitions and exposed results previously, the 
following conjectures are given: 

Conjecture 2. 1. The −∂ cohomology of closed 
submanifolds of co-dimensions ,1−k  ,kn − and ),1( −kn  is 

a cohomology of functions. 
Conjecture 2. 2. The −∂ cohomology of contours is a 

cohomology of functionals. 
and 

Conjecture 2. 3. The −∂ cohomology of line bundles is a 
cohomology of fields. 

The three conjectures have been demonstrated in [1-3], 
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using some ideas of Huggett, Baston and Gindikin [11, 12, 
13]. 

Then to a derived categorical level we have that these 
dualities can be generalized in certain sense (for example 
living in the Stein coverings) using the Deligne connection to 
establish the equivalences between derived categories of 
regular connections on an algebraic manifold and category of 
local systems of complex manifolds as the defined here on the 
neighborhoods iU . 

Theorem (Deligne) 2. 2. The functor DR , gives a 
categorical equivalences between the category of regular 
connections on an algebraic variety X , and that of local 
system on the complex manifold M . 

This correspondence DR , is intensively generalized to 
−D modules and plays substantial role in the 

Riemann-Hilbert correspondence for regular holonomic −D
modules [14, 15]. 

3. Applications to the Field Theory 
The first propositions obtained in the dualizing process 

inside of integral operators −∂ cohomologies on a complex 
Riemannian manifold M , are clearly the first indicators on 
the obtaining of a field theory that obtain the different physics 
through of a geometrical re-interpretation of the different 
cycles in which cans be divided the space-time and their 
different pieces that compose as physical entire.  

The cohomological contours in a physical stacks represents 
the regular values that a field can to take, that is to say “states” 
in the integral sub-manifolds corresponding to the foliations in 
an algebraic manifold.  

As an example on some applications of the field theory in 
the space-time representation theory (considering the 
space-time modeled as Riemannian complex manifold where 
the cycles and co-cycles can be, for one side, orbits of the 
corresponding homogeneous space ( BGM /≅ ), and for other, 
the dual orbits to twistor space cohomoloy group 

),,Orbit  dual( OsH  where O , is the sheaf of the 

holomorphic functions) is the field representation of the 
space-time. The corresponding cohomology 

),,Orbit  dual( OsH  is a relative cohomology (seemed to the 

exposed in last part mentioned in the section 2) in the 
algebraic category on O .  

We consider the study of electrodynamic representations of 
the Cosmos [4]. Then we can have the following results to the 
flat and curved cases: 

Theorem (F. Bulnes) 3. 1. Let  ,C be a vector bundle of 
lines of the causal structure of the Cosmos M . We consider 

in particular  ),(3
CP≅C  in, then there is a mapping 

),,4( CSO −)2,2(SU invariant given by the twistor transform 

[16],  

)),(,(),)(( 2131 MUHH Ω→CCP           (3.1) 

which is an isomorphism that identifies to ,)( 4*2 EMTP ⊗∧  

(with ,E  trivial bundle VM × , with V , a complex vector 

space) with the tangent bundle  ,C in 4
C .  

Proof. [4]. 
Theorem (F. Bulnes) 3. 2. Consider the same hypothesis to 

 .C  Let 4SU ⊂  (an open in 4S ) then there is a mapping 
given by the Penrose transform on the −2 cohomology, 

),,(),)((: 232 OP UHH →CCP          (3.2) 

which is an isomorphism that identifies to ,)( 4*2 EMTP ⊗∧  
with the tangent bundle of spheres ,4TS  in 4

C . 
Proof. [4]. 
These results are to a “conjecture level” and their 

demonstrations are schemes of demonstrations properly said, 
but is invited to our lectors to precisely them, using fine tools 
of representation theory and their realizations through these 
transforms. Also a careful reviewing in field theory involved 
the new ideas on schemes and rings in the cohomological 
context, establishing perhaps a generalizing of the −∂
cohomology. 

We can establish the following Table 1, using dualities. 

Table 1. Some Dualities in Field Theory  

Cycles Co-cycles 

Orbits of line bundles 
Orbits in holomorphic functions sheaves 
O  

Hyper-planes, Hyper-lines, 
horocycles, etc Tomography of M  to field observable 

Points, Space-Time, Light 
rays Complex line 1

CP , twistor space, points 

ASD holomorphic bundle 
field gauges in MC  

ASD ),(,CGL  field gauges in MC  

States Vertexes 
Branes Strings 

ZRM-fields ,BA…ϕ  of 

helicity 2/n− , on +MC  

ZRM-fields ,BA…ϕ  
of helicity 2/n−  

on +TP  

A duality that extends these applications to string theory 
and generalizes the dualities in Hecke categories context to 
their geometrical Langlands program is (Table 1 [17]):  

M ( , Y)
G χ∧ ≅ ɶH g ,          (3. 3) 

which was studied in [18]. Here the Lie algebra ɶg,  is the 
loop extension of the loop algebra ( ).tg  

4. Conclusions 
We want give the principles to obtain a hyper-cohomology 

based in extensions and generalizations of the −∂
cohomology to the space-time study, as well as give a theory 
of geometrical analsys and complex function theory to solve 
all cases of field equations as one resolution “seemed” to a 
Mayer-Vietoris sequence: 

Conjecture 4. 1. The succession of cohomology classes 
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,),(

))(,/(),(0

CC →−Π→

→→→

ℓ
r

s
D

d

H

OLGHVMH L
   (4.1) 

is exact. 
One possible demonstration of (4. 1) is considering the 

demonstration of the unitary leader representations to 
),2,2(SU  through of orbits, and extended to ,)2,2( GSU ⊗  

where, is non-compact [19-21]. The orbit integrals are 
calculated in hyperbolic surfaces with corresponding 
characters to asymptotic behavior of matrix coefficients [20], 
of the endomorphism related with the vector bundle of 
Riemannian space M . The functional, of the evaluating of 
the twistor transform on orbits of the space ),2,2(SU  is a 

indicator of the unitary nature of the leader representations of 
the group )2,2(SU  [6, 19]. Then the extension of the centre 

of the Lie algebra 
C
g , will determine a finite number of 

connected components and will can calculate the integral in 

the cohomology ))(,/( LOLGH s , being C=Qδ [4, 16]. 

For other way, as has been mentioned to the equivalences (3. 
3) the development that is obtained through equivalences is 
discovery of twistor string theory given by Witten a 
re-formulated by many mathematicians as Drinfeld, and other 
in the geometrical Langlands program. Certain 
super-symmetric scattering amplitudes with particularly neat 
forms in twistor space continue to be explored. The twistor 
methods in integral geometry admit generalizations to 
different space-time signatures, although all with the several 
versions of −∂ cohomology. This has yielded various 
applications in Riemannian geometry where some studies 
result more relevant as the study of minimal surfaces [22, 23] 
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