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Abstract: Through of a cohomological theory based in thetimia between integrating invariants and their edéht
differential operators classes in the field equati@as well as of functions inside of the integrabmetry are established
equivalences among cycles and co-cycles of theedlsab-manifolds, line bundles and contours ofsgprece-time modeled as
complex Riemannian manifold obtaining a cohomolofigeneral integrals useful in the evaluation amhsurement of fields,
particles and physical interactions of diverse reatim field theory. Also are used embeddings ofleydn the complex
Riemannian manifold through of the dualities: libandles with cohomological contours and closed rsaifolds with
cohomological functional to build cohomological spa of integrals as solution classes of the cooretipg field equations.
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1. Introduction A =T/Z, belonging to ad - cohomology in holomorphic
language.

To can to obtain a cohomology of general integral The cohomologies of functional and functions resipety,
operators that determines complex analytic solstibmough can be constructed through the complex cohomolofly o
classes of a cohomology that born from tBe- cohomology hyper-spaces they are generalizable for vectods‘le!h_the
is necessary to use a holomorphic language [1] with Same sense of the Stein coverings and therefotheof-
purpose of obtain holomorphic forms that involvaedforms. cohomology. Then the following question arises, htaw
In fact, this methodology is a way of so many taigests the establish an isomorphism of cohomological classes f

use of complex hyper-holomorphic functions in aputo of
functions in complex analysis, although using filmas on
some quaternionic algebra. The holomorphic fornggired
in this language are good to express the integrabmplex
vector field as integral of line it has more thaegh lines
bundles and hyperplanes like for example, havingentioan

enough lines and hyperplanes respectivelyir', and ¢",

visualizing these fields like holomorphic sectiaisomplex
holomorphic bundles of fibrationX - M .

functions, functional and vector fields inside ti@omorphic
context possible?

Is possible to determine a cohomological theorintegral
operators that establishes equivalences among tigeets
and the geometrical objects of closed submanifdidaedle of
lines and Feynman diagrams?

Is possible that everything can decrease to a esingl

cohomology of general integrals on contours or catiogy
of generalized functional?
Before, to give an answer to the previous questiwagive

The 0 - _cohomology e>_<ists naturally in cov_erings of Steinsome preliminary definitions that we will use t& fioncepts
X - M, like holomorphic forms. Then the integral can beand outlines of the wanted general theory.

expressed on spaced 5, and A,[2, 3], that are lines and

Let M, be a complex Riemannian manifold and [et be

hyperplanes ofCP", and C", and that as such, they are@ sheaf of germs of holomorphic sections of a wecto

“integral orbits” of the complex manifold =G/L, and

holomorphic sheaf.
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Def. 1. 1. We say that a spddé(M,0), is an integral
operator cohomology (in the sense of the integrbtke field

equations) of thosed — equations, if this is a solution class or

general integral of these equationsih [2, 4].

Def. 1. 2. An integral as generalized solution oD a
equation is a realization of an irreducible repnésion of a
0 — cohomology of complex closed submanifolds [3, 5].

If the irreducible representations are unitary thenhave a
complex L% - cohomology or d- cohomology with

coefficients in the spacd{z. The integral operators belonging
to their integral operator cohomology are thosthefcomplex
Fourier analysis.

In the case of a real reductive Lie group, the gadized
integrals come determined by their orbital integrdlet G,

be a real form ofG“, and P, their parabolic subgroup. The
generalized integrals iiG , are the integrals on open orbits o

the generalized flag manifol&G“/P .
Of this way, if G=U@Ln), and the generalized flag

manifold is therP" , then the group of positive lines™,
(which is anU (4, n) — orbit) is an open orbit irp" () . In this
case the integrals of line are of John type [1]:

() =ILDPn(C)f, OpOr?,  (an

The general integral in this case comes given bylistor

transform on the corresponding homogeneous linesllbu
that is to say,

HY(p*,0(-n-2)) - H(P**,0n-2), (1.2

Through the twistor transform like intertwining optor of
induced tempered representations o@ acohomology we
have representations oBU(2,2) , that are orbits of a
fundamental unitary(a, K) - module [4]2. Then we can to

assign a vector bundle of lines with a unitary espntation
that classify it.

The concepts of general integral and generalizézbial
are different, because one refers to the wholes désolution

31

f00 =¢ [l [ A& NA-(£0) "), (1.3)
[

Where the integral om , is understood in terms of their
regularization (roll that carries out the Hilbadrsform). The
constantC, depends on the parity of the dimension of the

spaceR", where was carried the tomography [1].

To answer the first question, we need a structure o
complexes that induces isomorphism in an integparator
cohomology such and as we want.

Def. 1. 3. A covering of Stein is a set of Steinnifzlds
M, and =,, of the corresponding fiberX - M , and
X - =, of the double fibration [2].

Let us consider the complexes given in [2], and ust
consider the structure defined by a Stein coveagiagn by the

fset of open{M s}, and {=,} , in the topology

Iy ={@ & IMXIX OM*Z(= MynZ, 20),  (1.4)

Then a complex inX, is the space sucfiQ}}, that for

any complex{Q'}, in a corresponding long succession
having that

{QF Q') (1.5)

that is to say, all the subcomplex€, , of the complexQ" .

Then the integral operators cohomolody’ (M,0), in a
complex manifoldM , is that whose complexes conform a
holomorphic structure that induceg (the corresponding
integral manifold a generalized according structure of
integral submanifolds

The integral submanifolds represent solutions 0$¢ého —
equations in cycles oM . The integral submanifolds are the
corresponding cycles oM , low the integral operators of
H*(M,0).

For example, if we take the complex manifold , like a
manifold of rational curvesE,, about a twistor manifold

(where should understand each other this manifbldlike

cohomology of thosed - equations about a complex analyticthe manifold of integral submanifoldéo¢ally)) this comes

manifold and the other one refers to the classesobition
cohomology on cycles or co-cycles of the complexifioéd
[1, 2].

Another example in the sense of recovery of a fanst
space mainly the spach , is the recovering of real functions

from a projective structure of their line oE, , guided
according to the vectors ifi,M , that corresponds there to the
sections of a normal bundI&\E, , of the curve (infinitesimal
deformations to the curve) that is to say, thes&#am the

in the spacer", through values of certain integral operatorsnolomorphic structure that will induce the corresging and

Such is the case of the formula df(x) , recovered onR ",

1 Solutions to the ultra-hyperbolic wave equation.
2 These orbits possibly are orbits of the unitanug related with electrodynamics
and torsion in the space-time.

according structure (that is to say, in the comesing
integral manifold). In this case the generalizedoading
structure of integral submanifolds is the®) - conformal
integrable structure given by . The integral operators
cohomology in this case is the given by the faroflyational
curves.

The outline twistor in this case helps, if is nexey, to
establish the deformation of the integral curveshefvector
bundle of lines O(k) . In such case the integral perators
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cohomology isH* (M, 0) = H(T", O(K)).
This example is interesting not only for the faétt@ be
defining the integral operator cohomology that desi

Integralr@soy and Complex Space-Time Cohomology in Field Theo

Then since each one of the§e- orbits exists like aK -
orbit of the space of class&s /K, with Nijenhuis curvature
tensor then each flag submanifold ika— orbit of the vector

“integra|s" to M, under conditions of their proper Comp|exh0|0m0rphic G - bundle of the 2n — dimensional irreducible

differentiable structure, also for the fact of sBti the
integrability condition for the equation of the Wetgnsor

W; =0, where HO(T*,0(k)) (respectively H°(T,O(k)))
are the solutions or integrals ofV, =0 (respectively
W_ =0)[6, 7].

2. Dualities

The possible dualities that we examine to conjectevel
will be the corresponding to line bundles with cotodogical

symmetrical Riemannian manifold (M) . Their integrals are
orbital and their extensions t™M 5, and A,, are generalized
integrals.

One proposition as a preliminary conjecture inrst fstudy
in integral geometry considering cycles insidé¢re—1) - 9 —
cohomology is the following:

Proposition 2. 1. The(n-1)-0 - cohomology with
coefficients in a complex holomorphic bundle bf , is a
cohomology of hyperlines and hyperplanes.

Their demonstration is based on tomographyah and

contours and closed submanifolds with cohomologicahtegral operatorsd — cohomologies onc” .

functional. Before, we will give a theorem on intalgpperator
cohomology and their equivalences that generates.
Theorem (F. Bulnes) 2. 1 [8]. In the integral opara

Other conjecture can be:
Proposition 2. 2. The integral of contour are gatieed
functional in a cohomology of contours (cohomolagic

cohomology H" (M, 00) , that has more than enough complexunctional).

manifolds the following statements are equivalent:
a)The openM s, and A,, are G - orbits opened up in
X, and their integrals are generalized integral Kbr,
b)Exists an integral operator T , such that

H* (M, D) O ker{D - equatioris,
c) M :UMIJ/;a andaz =Ué/g: (H* (M, OH™(U, pIO(V)))-
Proof. [8].

The integrals on the operG - orbits satisfy theG -
invariants integration

.[G/Hfd¢(¢r) :-[G/H(f c®TH, (2.1)

where we have that the generalized orbitsdn give us a new
cohomological class that is related with the presidor an
integral operatorT , defined for

H*(M,0()) - H' (&, 770Ww)) (2.2)

and such that

H* (Z,77'0()) O; ker{D -equation§/H}  (2.3)

The implications are happened in the correspondefite
cycles of H* (M, ), and ker{D - equations, only exists as
integral of thosed — equations [9] inM , (M integrable) if
R (j)=0.

Vv

Also to considerM =U o Y, and = -U yor V.

We give the following definition.
Def. 2. 1. A cohomological functional of a given

cohomology H" (M -singV,Q"), is an integral operator

cohomology in the wayH " (M —singVl,Q"), where singM ,

is the twistor space dfl (class to which belongs, for
example, the Feynman integrals).
Let us considerp, and differential q— forms of the

cohomologies about the complex manifoldé, and Y ,
respectively, to know,a OHP(X,S),and BOHP(X,T).

Let us consider their product surrounds given for
a0 BOHPY(X nY,SOT), and the connecting map in
the sucession of Mayer-Vietoris:

0*1HP(X 0 Y, SOT) - HPI(X O Y,SOT), (24

We consider for the inner product af , and 8, the
relationship

a-p=0*(a0p),

This description of the inner product has been vsgd in a
new development of the cohomology for twistor déags
begun by [6, 7]. This new method is almost oppasethe
procedure that we want to use in tineification of contour
integralon diagrams, in this respect, of the Feynman imtegr
we want to ensemble a Feynman diagram for appbicatof
the product “cup”. The interior edges of a Feynnd@agram

are taken again as elements of grouﬁé) (such extra
elements have to be abandoned in a cohomology,ftike

(2.5)

then for N — dimensional planes of a Grassmann manifol@xample, H" (M,77'0()), and the interior edges shape the

Gy, one has thatMJ:UMﬂ/Z, and A, = U A

fields (assuming that they are elementary statesjeiveral
groups HY. If f, of these elements existd!, this new

z/ 7, that which defines cycles in the cohomological 8pacprocedure determines an element of the cohomology

of dimension (N —1), with U O M.

Hf (n —f',Qd), where (', is the union of all the subspaces
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defined by internal edges, always with the subspane, integral submanifoldS, exists) T =r" +iV, whereV ,isa

on those which elementary statds, are singular. By the cone, not necessarily convex (so that has applisabn the

theorem 2. lincise b), the map exists fibers of the sheaf of line bundle). The idea id&dine the
expression f - J, inside the context of the line integral in

HfM-2,0% - H™MM-7,0), (2.6) such way that the values of , on the archy, are values of

Using the description of Dolbeault of the first gpo f, as a hyperfunction represented this as a vaniaib

forgetting the bi-graduatior{d, f), and reminding only the holomorphic functions f(z), in a Stein submanifoldM 5,
total graded + f . A description of €ch of this map is used SuchthatMs I T.

for the evaluating of twistor cohomology. In ouseawe will Then the sesquilinear mating of the hyperfunction
only use the duality of Poincaré to know in whatmemt of ~corresponding of, and the function , is an contotagral and
for proposition 2. 2 a generalized functional in the

cohomology H(M - ¢,c). Indeed, letT =r" +iV, be the
domain tube where the coné, is not necessarily convex.
This cone V =UgyV, , in the conformal generalized

the evaluation of an element dfl "*9(M -¢',c), one can
need a contour iH ;4 (M - ¢',C).

This contour “cohomologic” is easy to relate oralitional

in Hy (M -¢,¢), so that the map exists , . .
structure, where thé/y, is the convex maximal sub-cone in

Hg(M=2',c) - Hy(M—2,0), (2.7) V. Consider to our manifolcM, as a complex manifold.

The idea is that holomorphic form required in fhisguage is

giving for iteration the constant map of Mayer-Vi (in  good to express the integral of a complex vectddfas a line
homology) f , times, one for each field. integral having more than enough line and hypengda
Al this is worked easily for the diagram produetdlimb, Pundles as for example; when we had more than kel

and can demonstrated th&t®(N —¢,c), and that the image hyper-planes respectively iP", and C" , visualizing
of the generator of this group low two maps of Maykoris these fields as holomorphic sections of compleximalrphic

is the usual contour for the product to climb. Tdiirms that bundles of fibers X -~ M . In A, exist suchq-

only exists a conomological contour for the prodiactlimb ~ dimensional cycles such thatV=Ug,V, . Let
(like is being expected) and suggests a methodsdafied _ _ . _
contours to observe which cohomological belongéot. T=R"+iVs, with Stein coveringT = U oy Ts- Letus

Def. 2. 2 (hyperfunEtion). A hyper-function or", is an consider the vector cohomologi (@) (r,0) , using this
element of the(n - 1) - @ — cohomology H "™ (M, [), with covering. Then for théheorem 2. lincise b), a canonical

M=c"/r". operator exists (of boundary values fo} defined by
Proposition 2. 3. The general line integrals arefional on
arches/, in geometry of conformal generalized structure. H@(r,0) - HOc"/r", D), (2.9)

Proof. Consider a vector holomorph(@ - invariant sheaf
and their corresponding bundle of lines associatethose  Then the integral can be expressed on spadgs and A,
(r0) - forms on the topological vector space. Then thenat are affine to lines and hyper-planesraf” , and c", and
integrals on the fibers of the vector holomorpltiieaf are the that as such these are orbital integrals of the pbexn
integral of line on the cycles of the sectioXs of the vector manifolds M =G/L, and A=T/Z, belonging to ad -
cohomology in holomorphic language. In particuldr i

sheaf given by_[X .0,000Q", (where Q,, is a complex
y ¢(z|5,d5) 0QY, has regular value§lz IR ", then

of the defined in (1. 4)). Then the holomorphiasture that

constitutes these complexes induces (in the caoreipg _ n

integral manifold) a conformal generalized struetuof ¢(x)—Jy¢(z|5,d5),DzDJ& ' (2.10)
integral sub-manifolds where the arclesare local parts of

integral curves of the fibers of the vector shedine bundles. ~ Then in the integral submanifold this! , takes the form

In other words OyUOZ%;(V,), exists locally an integral

submanifold S, with zOS , such that y=T,S, and IyX'G_Iy¢(Z'5’d5) f(z)__[y f(z|5)’ (2.11)

T,S0Z;(V,,), OwOS. Then the line integral can be written

. . . But these integrals are contour integrals belondm
in this generalized conformal structure as: ¢ g dmer

cohomology H(M - ¢,c), of a cohomological functional.
Jx.J:J f.o,050Q", f0OT (2.8) Then the integrals in of the right-handed of (2) Hte
v S functional inside the integral cohomologyt "2 (c"/r ", 0) .

where T, is the domain (in the local structure where the Thepropositions 2. 2and2. 3 establish that the structure of
complexes to the suitable integral operators cotogyois
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now that to induce isomorphism in other object s#asof the Through consider a complex manifold Y, the closed
manifold M . Then arise the question; exist some procedursubsets EOX , and FOY , and elements

inside the relative cohomology oM , that we can use to 4 HP(X -E,0), and BOHY(Y -F,Q), we can use the

induce isomorphism of integral operator conomology? . . : .
; : maps connecting in the exact successions of relativ
Consider a closed subset (or relatively closéd) of a cohomology

space X, and a sheaf®, on X . In sufficient form we
choose an open covering, of , with a sub-coveringr", of o roo o4
X /E. A relative Gch co-chain is a &h co-chain with 0~ H"(X,0)-H(X-E,0) -~ HE"(X\E,O) ~ (2.15)

regard to the covering , subset to the condition that this is - HPY(X,0) - ...,
annulled when we restrict to the subcoverivig Then one
has the exact sucession of groups of relative @insh and the corresponding té O Y,

0~ C2(X,0) - C°(X,0) -~ CR(X\E,0), (2.12) 0~ HI,Q) - HIY OF,Q) - HILY,Q) - 216

where CP(X,0), is the group of relative co-chains. The - H™(Y,Q) - ...,

inherent relative co-chain to a co-opposite operatothe
ordinary co-chains and the limit has more than ghofine

coverings of the homology of the compl&¢ (X,0), they

to obtain elementg a, and r£ . Then the product surrounds
on relative cohomology

give the groups of relative cohomologht £ (X,0) . In this O:HP*(XOVY,00Q) i,

case is not necessary to take the limit since abétithe one pra+l _ 217

has the relative theorem of Leray, which estabtisét if zH (XOY-EnF.00Q) - ( )
+g+ +0+2

HP(X,0)=0 p=1 for each setU , in the coveringy,  HEE (XOY,00Q) -~ HP*(X0Y,00Q),

then this covers enough to calculate the relatblemology.

The long exact succession cohomology of the exXaatts
succession defined .u.p determines the exact suocessi a-,B=r_1(raDr,6’),
relative cohomology is:

and this demonstrates that
(2.18)

Since the interactive vector fieldX , are given as elements

(2.13) of groups H', defined on differential spaces, we need the
vector product in relative cohomology, that is:

0 - HY(X,0) - H%(X,0) - C°(X \E,0)
- HE(X,0) - ......

where the maps of the cohomology has more thanginoq, x: HE(X,0) DHO(Y,Q) — HEI (X xY,00Q),
to the given onX \ E, where these are their restrictions. ' (2.19)

Other important result on the relative cohomologythie '
division theorem which establishes in shallow tetivt the Strictly speaking® 0 Q , could be 7%, O O 7%, O .. As
relative single envelope cohomology depends theddiate
neighborhoods of the embeddings &f, in X . With more
precision, giving an open subseX'C] X , such that N
(X\X")n E=0, acanonical isomorphism exists

before, ra xrf3, this in the image of the connecting map

r
HP2(X 0Y-ExF,00Q) - HEI?(XxY,00Q) -

(2.20)
HE (X,0) =HE (X',0), (2.14) - HP2(XxY,00Q),
This is the form of inducting isomorphism. lin azase the with
covering Y, is a Stein covering where the integral operator

1 -1
cohomology should exist asl "2 (M,0), which we want. a-g=r -(raxrf)Qv ~(p.a.r), (2.21)

Why? Because the natural place wheredancohomology  Then arises the technical question, how to relate
exists is in the Stein covering, and is that wet@iobtain the  cohomology of contours like the one given by

solutions of partiald - equations. ~ H™9(M-r",c), with an integral operator cohomology of
Let us apply the relative cohomology to cohomolegié vector fields?

contqurs, becau_se we want .generahzed functionals  a To answer there is this question, is necessaryidenthe

solutions of the differential equations [5, 7]. | SE =P U ith i=12.. f
Let us consider the following general procedure tlue complex componentsE =R -U;, wi P=La.. 1

Baston [6], for the exhibition of all the cohomoic@ being P, P, or P*, and U;, open subsets ofP ,

. - - . . !
functional on a given collection of fields, proceeluequired belonging to the correct cohomology for the Penrose
for the evaluation of boxes-diagram, that is to, sthe

1
obtaining of the elementary states(i = 1,234), of the field transfo.rm on HU, ,O.( ). _ o

The idea is to obtain an image of the vector fieliéke an
through a local cohomology.
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element of a cohomology has more than enough honeogs and second place the cohomology groups
bundles of lines in each component of the fieldf(ik to say, H5f+q(l'l -0,N-00E), and

to determine a cohomology for each line integraleath ; _ _ _
component of the fieldX ). Beforehands can be seen in theHe (M -O,M-OOE;r) , are isomorphic. Now is
next time that this will be possible with the onenPose necessary to insist in that is in the image of rirap (2. 4)
transform which is one of these integrals. Letwhich will take place to that can be visualizedaasontour.

E=Fx---xF;. Let us denote forl;, a projective line This object when is a contour, we call tdh), the

contained inF,, and letL =1L, x---xL;. For vector fields functional “associated to” the kerndh, and we affirm

we have an element in the cohomological grouﬁtrongly that this doesn't exist iE(J O, because then

H(U,,0(r))0...0HU,,0(-r;)), and for results of

relative cohomology and twistors projective diagsai®, 7],
the product point for the integral of line for #tlese fields
doesn’t get lost, and for the Kinneth formula fefative
cohomology one has that

H'(U,,0(1) O...OHY (U, 0¢r) OHZ U;,0(1), (2.22)

Hstq(M-O,M-OUE) =0, that it is expected. We can

refer to this problem as impossible, since necgss&rz O

so that the field chosen in this cohomology isrttest general
thing possible. Because the idea is to obtain aygarof the
vector field X, as an element of a cohomology has more than
enough homogeneous bundles of lines in each compaifie
the field. Let us notice that our defined fielde querfectly
general. In fact, if the vector fields are themsdatary states

where 1 = (r,...,I¢) . Each linear continuous functional on | =L;, and F, are similar to a closed submanifol (of

these fields is therefore an element of the grdupompact
relative cohomologyH 2" (M, - E,O(-r)). It is necessary

to clarify that (2. 22) and the groupl 2" (M,M - E,O(-r)),

are not in general dual.

Now then, considering this cohomology of vectoldig is
needed to decide how the interior of a diagram ses@ome
of these functional. For we remind it the interdra diagram

like the holomorphic kernelh( Hgf‘q(I'I—O;O(-r)). For
example, in the scalar product spin zerd
hODWODZ/(W,Z%)? OH%(N-0;0(-2-2). While in the
box

hy DDW DX ODY ODZ/(W, Z W, 2 Y, X'Y52°)
OH %N -0y;0(-2-2-2-2)).

g, is usually zero. In these casés can be in principle

calculated by integration outside of the interiertexes of the
diagram twistor, although this not always simpfeq|, is not

null, will the determination ofh, in any moment be clear.
What to make in this respect?

real co-dimension4f ,with normal directional made). Using
the isomorphism of Thom has that:

Hq(A=O) CHgeq(M-O,N-O0OA), (2.25)

which is deduced that the visualized contours lagegiven in
Htiq(A = O) . If the vector fields are not, then elementary

states to all the length oHs;. (M -O,M-O0E), is

homotopic to (M -O,NMN -O0OA), which establishes their

generality in homology.
Then we can enounce that M -O,N-O0E), is

homotopic to (M -O,N -OOA), then the functional on
H'(U,,0(r)) O...0HYU;,0(r;)), associated to the kernel

hDHsf'q(I'I—O;O(-r)), are given by elements of the
homology groupH ¢,4(A = O). Now then, which of these

cohomologic contour is?

A class ofcohomologic contours the classic or traditional
contours. However carrying oetensionf these through
twistor geometrywe can consider cohomologic contours to all

Let us appeal to the complex cohomology and let u&ie image elements of the generatortdf; (M - £,c), under

consider an elementr[J Hg' 9N -0O,N-O0E). Then

aOhOHS " (M-0,N-00EO(-r)). This is a induced
map by the inclusion

itH¥ T (M-0,N-00EO0(-) - H" " (M,N-EO(-r), (2.23)

where such , is a functional chosen for the intedb the

diagram (that is to say) like is required. But this is difficult
to visualize to as a contour. For it, let us noficst that the
embedding of the constant sheaf, in O(-r), induces a

mapping

HM-0,N-O0ER) - H/9(M,N-EO(r)), (2.24)

two mappings of Mayer-Vietoris. Then, can be exeshthis
particular theory of contours to the spin conteit?at affirms
in this respect the hyper-complex analysis?

Through the definitions and exposed results preshpthe
following conjectures are given:

Conjecture 2. 1. Thed - cohomology of closed
submanifolds of co-dimensionk—1, n-k,and nk-1), is
a cohomology of functions.

Conjecture 2. 2. Thed - cohomology of contours is a
cohomology of functionals.
and

Conjecture 2. 3. The — cohomology of line bundles is a
cohomology of fields.

The three conjectures have been demonstrated 8j, [1-
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using some ideas of Huggett, Baston and Gindikin 2,
13].

Then to a derived categorical level we have thasé¢h
dualities can be generalized in certain sense éi@mple
living in the Stein coverings) using teligne connectiomo
establish the equivalences between derived categarf
regular connections on an algebraic manifold arnegeay of
local systems of complex manifolds as the definee lon the

neighborhoodsU; .

Theorem (Deligne) 2. 2. The functobDR , gives a
categorical equivalences between the category gtilae
connections on an algebraic variely, and that of local
system on the complex manifoli .

This correspondencdR, is intensively generalized to
D- modules and plays substantial role in
Riemann-Hilbert correspondence for regular holoromi—
modules [14, 15].

3. Applicationsto the Field Theory

The first propositions obtained in the dualizingpbgess
inside of integral operator® — cohomologies on a complex

Riemannian manifoldM , are clearly the first indicators on
the obtaining of a field theory that obtain thefeliént physics

thedemonstrations are schemes

Integralr@soy and Complex Space-Time Cohomology in Field Theo

(with E, trivial bundle M xV , with V , a complex vector

space) with the tangent bundig, in c*.

Proof. [4].
Theorem (F. Bulnes) 3. 2. Consider the same hypathe

€. Let UOS* (an open inS*) then there is a mapping
given by the Penrose transform on tBe-cohomology,

P:H2(P3(0),€) - H2U,0), (3.2)

which is an isomorphism that identifies thT;(M YOE,

with the tangent bundle of spheré’§4, in c*.

Proof. [4].

These results are to a “conjecture level” and their
of demonstrations pycgsad,
but is invited to our lectors to precisely themingdine tools
of representation theory and their realizationeudgh these
transforms. Also a careful reviewing in field thganvolved
the new ideas on schemes and rings in the cohoimalog
context, establishing perhaps a generalizing of the
cohomology.

We can establish the following Table 1, using diei

Table 1. Some Dualities in Field Theory

through of a geometrical re-interpretation of thiedent

cycles in which cans be divided the space-time toadr
different pieces that compose as physical entire.

The cohomological contours in a physical stacksesgmts
the regular values that a field can to take, th&d say “states”
in the integral sub-manifolds corresponding tofthiations in
an algebraic manifold.

As an example on some applications of the fielathén
the space-time representation theory (considerihg t
space-time modeled as Riemannian complex manifblerev
the cycles and co-cycles can be, for one sidetodfi the

corresponding homogeneous spabk{ G/ B), and for other,

Cycles Co-cycles
Orbits of line bundles Cc))rblts in holomorphic functions sheaves

Hyper-planes, Hyper-lines,
horocycles, etc

Points, Space-Time, Light
rays

ASD holomorphic bundle
field gauges incM

Tomography of M to field observable

Complex line C]P’]', twistor space, points

ASD Gl(,c), field gaugesincM

States \ertexes

Branes Strings

ZRM-fields ¢ g, of ZRM-fields ¢, g, of helicity -n/2
helicity -n/2, on cM* on pT*

the dual orbits to twistor
H®(dualOrbit©®), where © , is the sheaf of the
holomorphic functions) is thdield representation of the
space-time The corresponding cohomology
H*®(dual Orbit ©), is arelative cohomologyseemed to the

exposed in last part mentioned in the section 2)tha
algebraic category or©.

We consider the study of electrodynamic represemsif
the Cosmos [4]. Then we can have the following ltega the
flat and curved cases:

Theorem (F. Bulnes) 3. 1. Lef, be a vector bundle of
lines of the causal structure of the Cosnids. We consider

in particular (!EDJP>3(<C), in, then there is a mapping
SO(4,c), SU(22) —invariant given by the twistor transform

[16],
HP3(c),€) - HIU,Q%(M)), (3.1)

which is an isomorphism that identifies & T,;(M “OE,

space cohomoloy group

A duality that extends these applications to stiingory
and generalizes the dualities ktecke categoriesontext to
their geometrical Langlands program is (Table 1)f17

H, OM,@EY) (3.3)
which was studied in [18]. Here the Lie algebga is the
loop extension of the loop algebra(t).

4. Conclusions

We want give the principles to obtain a hyper-cobtogy
based in extensions and generalizations of the
cohomology to the space-time study, as well as gitieeory
of geometrical analsys and complex function theorgolve
all cases of field equations as one resolution rfssf to a
Mayer-Vietoris sequence:

Conjecture 4. 1. The succession of cohnomology ekass
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0- HYMp,V) - H3G/LO(L)) - [6]

S (4.1)
— H (I'I f,C) - C,

[7]

is exact.

One possible demonstration of (4. 1) is considetimg
demonstration of the unitary leader representatioos
SU(22), through of orbits, and extended ®U(22) 0 G,
where, is non-compact [19-21]. The orbit integraee
calculated in hyperbolic surfaces with correspogdin
characters to asymptotic behavior of matrix cogffits [20],
of the endomorphism related with the vector bundfe
Riemannian spacé/ . The functional, of the evaluating of
the twistor transform on orbits of the spa&&(22), is a

indicator of the unitary nature of the leader reprgations of
the group SU(22) [6, 19]. Then the extension of the centref11]

of the Lie algebrag,., will determine a finite number of
connected components and will can calculate thegrat in

(8]

9]

[10]

the cohomologyH *(G/L,0(L)) , being &, =C[4, 16]. [12]
For other way, as has been mentioned to the eguivas (3.

3) the development that is obtained through egeneds is [13]

discovery of twistor string theory given by Wittea

re-formulated by many mathematicians as Drinfetd] ather [14]

in the geometrical Langlands program. Certain

super-symmetric scattering amplitudes with paréidyl neat [15]

forms in twistor space continue to be explored. Thistor
methods in integral geometry admit generalizatidos
different space-time signatures, although all wité several
versions of d - cohomology. This has yielded various
applications in Riemannian geometry where someiesud
result more relevant as the study of minimal sw$d@2, 23]

[16]

[17]
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