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Abstract: This paper presents an explicit hybrid method for direct approximation of second order ordinary differential 

equations. The approach adopted in this work is by interpolation and collocation of a basis function and its corresponding 

differential system respectively. Interpolation of the basis function was done at both grid and off-grid points while the 

differential systems are collocated at selected points. Substitution of the unknown parameters into the basis function and 

simplification of the resulting equation produced the required continuous, consistent and symmetric explicit hybrid method. 

Attempts were made to derive starting values of the same order with the methods using Taylor’s series expansion to circumvent 

the inherent disadvantage of starting values of lower order. The methods were applied to solve linear, non-linear, Duffing 

equation and a system of equation second-order initial value problems directly. Errors in the results obtained were compared 

with those of the existing implicit methods of the same and even of higher order. The comparison shows that the accuracy of 

the new method is better than the existing methods. 
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1. Introduction 

Many principles, or natural laws, underlying the behavior of 

many phenomena in the world are statements or relations 

involving rates at which things happened. When expressed in 

mathematical models the relations are equations and the rates are 

derivatives. According to Khlebopros et al. [1], mathematical 

modeling is a key tool for the analysis of a wide range of real-

world problems ranging from physics and engineering to 

chemistry, biology and even economics using differential 

equations. Many of these mathematical models result into 

differential equations of high order. The solution of many of the 

equations could not be obtained analytically, hence the 

approximate solution by different numerical methods. These 

equations have been considered by several researchers and have 

been numerically approximated directly by circumventing the 

conventional method of reducing to system of first order 

equations before adopting appropriate method to solve them, see 

[2-5]. The main aim of developing numerical methods in recent 

times is to present numerical methods with an improved level of 

accuracy Adeyeye and Omar [5]. 

Various authors such as Liu and Jhao [6] investigated the 

solution of the nonlinear Duffing oscillator using a modified 

power series expansion method. This method is suitable for a 

long term computation of nonlinear ODEs. Yusuf et al. [7] 

proposed a fifth order zero-dissipative trigonometrically fitted 

two-step hybrid method for solving oscillatory problems. The 

coefficient of the method according to the paper depends on 

the frequency of the problem to be solved. While Olabode and 

Momoh [8] constructed a continuous hybrid method for the 

solution of second order stiff ODEs which was implemented in 

block mode. More recently, [9] investigated a hybrid multistep 

method for numerical solution of special second order initial 

value problems. The method catered for the elimination of 

phase-lag and amplification error due to addition of multi-free 

parameters. However, researchers have also looked into 

implementing derivative methods in solving ODEs, [10, 11]. 

Also in 2019, Singh and Ramos [12] presented an optimized 

two-step hybrid block method which is formulated in variable 

step size mode to solve (1). In 2013, Kayode and Obarhua [13] 

presented a continuous y function−  hybrid method for direct 

solution of second order IVPs of ODEs. In the paper, the 
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explicit method of same order of accuracy with the method 

was used as the main predictor for the implementation of the 

method. 

In this work, therefore, it is of the interest to investigate a 

continuous explicit method (main predictor in [13]) for the 

solution of general second order ordinary differential 

equations for the purpose of enhancing and comparing the 

accuracy with existing methods. 

2. Materials and Method 

In this paper the solution of second order initial value 

problem of the form 

0 0 0 1( , , ), ( ) , ( ) ,y f x y y y x y y x y′′ ′ ′= = =  is considered, 

where 

0 0 1, ,x y y ∈ℝ                              (1) 

The method for the solution of (1) is developed by using a 

partial sum of power series as an approximate solution to the 

problem as 
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Combining equations (1) and (4) to have 
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By interpolating equation (2) at 
1 3

, 0
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nx  and 

collocating (5) at 
3

, 0, 1,
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nx ζ ζ+ = the following system of 

linear equations are obtained to be 
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where ζ+ny represents the approximate solution ( )y x  at ζ+nx  

and ( , , ).ζ ζ ζ ζ+ + + +′=n n n nf f x y y  

for 2k = , the system of equations (6) are solved for the 

unknown parameters , 0(1)7ja j = . Solving this system of 

equation (6) for 2k = for the unknown parameters

' , 0(1)7ja s j = . The values of these parameters are 

substituted into the approximate solution (2) and using 

transformations in Kayode and Obarhua [14], the following 

are obtained: 
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Substituting (7) into approximate equation (2), the following continuous coefficients hybrid methods are derived: 
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Applying the transformation 1

1 1
( ), , (0, 1]+ −= − = ∈n kt x x dt dt t

h h
 in [14] to (8) its continuous coefficients 'α j s  and 'β j s  

are obtained as 
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The first derivatives of the coefficients are 
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Evaluating equations (9) and (10) at 1t = , produced discrete explicit hybrid method and its first derivative respectively. 
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The method (11) and its derivative (12) above are of order six. Their error constants 2pc +  are 
52.3768 10−×  and 

42.2308 10−×  respectively. 

3. Implementation of the Method 

In this section, the explicit method (11) is implemented by solving some test problems. The starting values for 

1 1 3
,
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4. Test Problems 

The developed method is applied to solve undamped 

Duffing equation, non-linear, linear and system of equations 

of second order initial value problems which were solved in 

[6], [13] and [15] respectively using Maple code to show the 

accuracy of the developed Explicit Hybrid Method (EHM) 

and the results are shown in Tables 1 – 4. The approximate 

solutions with the EHM are compared with the approximate 

solutions obtained with different methods in the literature. 

The following notations are used in the tables. 

TOL-Tolerance 

MTD-Method employed 

TS-Total steps taken 

MAXE-Magnitude of the maximum error of the computed 

solution 

et -The execution time taken in microseconds 

2PFDIR-Direct two point two step block method of 

variable step size in [15] 

2-STEP-Two step method with hybrid pints 
1 3

 and 
2 2  

exacty  - Exact solution 

computedy  - Numerical solution 

Problem 1: (The Undamped Duffing Equation) 

3 3 1
2sin 2sin , (0) 1, (0) ,

2

3, 2, [0, 1], 0.1

y y y x x y y

x h

α β

α β
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= = − ∈ =
 

The theoretical solution is 

( ) siny x x=  

Table 1. The absolute errors −exact computedy y  obtained with the method for Problem 1 is compared with that of [6]. 

x yexact ycomputed Errors in [6], for Problem 1 Errors in New Scheme (11) for Problem k=2, p=6 

0.1 0.099833416646828155 0.099833416646828154 3.08320e-018 1.32156e-019 

0.2 0.198669330795061220 0.198669330795061293 9.94755e-018 7.31247e-018 

0.3 0.295520206661339600 0.295520206661339624 1.58294e-017 2.46001e-018 

0.4 0.389418342308650520 0.389418342308650567 1.03541e-017 4.75722e-018 

0.5 0.479425538604203010 0.479425538604203009 5.09575e-018 1.00147e-018 

0.6 0.564642473395035480 0.564642473395035460 3.24719e-017 2.04587e-018 

0.7 0.644217687237691130 0.644217687237691120 2.87314e-018 1.04314e-018 

0.8 0.717356090899522790 0.717356090899522772 3.48571e-018 1.81124e-018 

0.9 0.783326909627483410 0.783326909627483402 3.00324e-017 8.56714e-018 

1.0 0.841470984807896500 0.841470984807896453 5.28006e-017 4.70129e-017 
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Problem 2: (Non-Linear Problem) 

2 1 1
( ) , (0) 1, (0) , .

2 30
y x y y y h′′ ′ ′= = = =  

The theoretical solution is 

1 2
( ) 1 ln

2 2

x
y x

x

+ = +  − 
. 

Table 2. The absolute errors −exact computedy y  obtained with the method for Problem 2 is compared with that of [13] 2-step continuous y function−  

method of same order of accuracy. 

x yexact ycomputed 
Errors in [13], for Problem 2  

,k p= =2 6  

Errors in New Scheme (11) for Problem 2  

k=2, p=6 

0.1 1.05004172927849 1.05004172933139 2.806096e-09 5.29040e-10 
0.2 1.10033534773107 1.10033534754502 1.568605e-08 1.86050e-10 

0.3 1.15114043593646 1.15114043223415 4.021738e-08 3.70231e-09 

0.4 1.20273255405408 1.20273255123188 7.887442e-08 2.82222e-09 
0.5 1.25541281188299 1.25541281315673 1.357736e-07 1.27374e-09 

Problem 3: (Linear Problem) 

2

6 4 1
0, (1) 1 (1), .

320
y y y y y h

x x
′′ ′ ′+ + = = = =  

The theoretical solution is 

4

5 2
( ) .

3 3
= −y x

x x
 

Table 3. The absolute errors −exact computedy y  obtained with the method for Problem 3 is compared with that of [13] 2-step continuous −y function  

method of same order of accuracy. 

x yexact ycomputed 
Errors in [13], for Problem 3  

k=2, p=6 

Errors in New Scheme (11) for Problem 3  

k=2, p=6 

1.0094 1.00894499508883 1.00894499575316 9.661260e-08 1.3567e-10 
1.0125 1.01174101816798 1.01174101847327 9.425732e-08 6.4125e-10 

1.0156 1.01444754268641 1.01444754245054 9.197108e-08 2.3587e-09 

1.0188 1.01706649423567 1.01706649390086 8.975049e-08 3.3481e-09 
1.0219 1.01959975475628 1.01959975420736 8.759359e-08 5.4892e-09 

1.0250 1.02204916362943 1.02204916320505 8.549846e-08 4.2438e-09 

1.0281 1.02441651873840 1.02441651801149 8.346327e-08 7.2691e-09 
1.0313 1.02670357750080 1.02670357684810 8.148622e-08 6.5270e-09 

 

Problem 4: (Two body Problem) 

2 21 1
1 1 1 2 2 2 1 2, (0) 1, (0) 0, , (0) 0, (0) 1,

− −′′ ′ ′′ ′= = = = = = = +y y
y y y y y y r y y

r r
 

The theoretical solution is 

1 2( ) cos , ( ) sin= =y x x y x x  

Table 4. The maximum errors −exact computedy y  obtained with the method for Problem 4, the execution time in microseconds et  and the total steps taken 

are compared with that of [15] two step four point block method. 

TOL 
Majid et al. [15] for Problem 4 

MTD TS 
New Scheme for Problem 4 

MTD TS MAXE te MAXE te 

10-2 2PFDIR 67 7.98175e-002 938 2-STEP 33 8.247561e-008 360 
10-4 2PFDIR 140 6.93117e-004 1472 2-STEP 55 7.521783e-010 1312 

10-6 2PFDIR 316 7.46033e-006 3318 2-STEP 74 9.286714e-012 2256 

10-8 2PFDIR 394 2.45673e-006 4181 2-STEP 130 1.561010e-015 2549 
10-10 2PFDIR 938 2.53897e-008 9932 2-STEP 274 2.204611e-017 4059 

 

5. Conclusion 

This article presents a continuous explicit method of order 

six for direct solution of both the undamped equation, linear, 

nonlinear and system of equations of second order initial 

value problems of ODEs. The method is consistent, 

convergent and zero stable. The method had served as a 

predictor for implementation of an implicit method in [13]. 

The test problems are solved and the results are tabulated. 
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The results in the Tables 1 – 4 are evidence that the new 

method compared favorably with its implicit methods in [6], 

[13] and [15] in terms of accuracy and efficiency. 
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