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Abstract: In this study we use the alternate point of view on the structure of ordinals, according to which each ordinal is the 

union of non-intersecting foregoing segments of ordinals of equal exponentiation. Each ordinal 1 2ω ω ω ... ω
n

n= × × ×  is 

seen as the union 
1

ω ω
n j

n j

ii

ω −

=
=∪  for any j=1, n-1 instead traditional union of foregoing intersecting segments of ordinals of 

consistently increasing exponentiation 
1

1
ω ω

nn i

i

−

=
=∪ . The first form corresponds to the geometric representation of ordinal 

ωn
 as an infinite n-dimensional matrix. According traditional formulation 

1
ω ωi

i

ωω
=

=∪ , thus ωω
 is ω -countable union of 

countable ordinals so ωω
 is countable. According to alternate formulation 

1
ω ωn

ii

ωωω
=

=∪  for any n, thus ωω
 is ωω

-union 

of ordinals and the findings will be different. These findings are: 1) the proof of countability of countable union of countable 

ordinals can not be directly or inductively transferred to its first limit ωω
-union; 2) ωω

 seems to be the first uncountable 

ordinal with its power is equal to continuum; 3) the subsequent ascending degrees of ω -exponentiation of ωω
, i.e. ω

ωω
, 

ω
ωωω

,..., correspond to consecutive 2ℵ , 3ℵ , 4ℵ , ... cardinals; 4) from here it also follows the direct justification of 

continuum hypothesis. Our study shows that in the domain of transfinite sets different points of view and its findings have the 

legal right to coexist as Nels Bohr's principle of complementarity in physics. 
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1. Introduction 

(1). Ordinals or ordinal type sets except usual attributes, 

such as cardinality and well-orderliness, also possess certain 

structure as they consist of consecutive segments. And there 

can be different points of view on structure of ordinals. For 

example according traditional interpretation ordinal ω
ω

 is 

defined as countable sum or union of intersecting countable 

ordinals, therefore ω
ω

 is also countable, we quote [4]: « ω
ω

 

is countable so far as ω
ω

 = lim ω
ν

 = lim{
1

ω , 
2

ω , 
3

ω , …} 

it is the number, which owing to equalities 1+ω ω= , 
2 2

1+ω ω ω(1+ω)=ω+ = , etc. can be written down [by 

analytical transformations] as: ωω
=

2 3
1+ω ω ω ...+ + +  = 

1
ω

νω

ν =∑ » [end of quote]. However, there is absolutely 

overlooked that the summation of ordinals in its ascending 

order from left to right is identically equal to the last on the 

right greatest ordinal due to the non-commutativity of 

addition operation for ordinals. So the above expression for 

ω
ω

 is not the proof but only the tautology ω
ω

= ω
ω

. 

Other proof of ω
ω

 countability is also based on analytical 

transformation with decomposition of ordinals on other basis, 

we quote [7]: «
2

=ω +ω5+9α  is the decomposition of α  on 

ω  basis. To spread out the same number on basis 2, it is 

enough to notice that ω =lim 2
n  

= 2ω
. Then 

2
ω =

2
(2 )ω

=

2
2

ω
, 

2
ω5=2 2 ,ω ω+ +  from where we get α =

2
2

ω
+

2
2

ω +
+ 2
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+
3

2 +
0

2 . By the same way we get ωω
=

2

2
ω

 » [end of quote]. 

Taking into account 
2

ω =
22ω

= 4ω
= ω  we can continue ω

ω

=
2

2
ω

= 2ω
= ω . 

The last view of ω
ω

 structure is significantly different 

from the previous one and the both of them contradict the 

standard description of ordinals in Cantor normal form [2]. 

Besides it is doubtful that such formal transformations are 

applicable to any ordinals because many other properties of 

operations with finite numbers aren't transferred to ordinals, 

e.g.: 1+ ω ≠ ω +1, 2 ω ≠ ω 2 and so on. Note also that such 

formal, inductive "proofs" can be generated the next, for 

example: since 2ω
= 4ω

=...= nω
= ω  and ωω

=lim nω
 then 

ωω
= ω . 

(2). Moreover, it is well known that in some sequence of 

ordinals {α, ..., β, ..., χ} some property P, which is inherent 

to all ordinals β<χ, is not transferred to χ if χ is the limit 

ordinal for all β<χ. The examples of such "intolerable" 

properties in {1, 2, 3, ..., ω } for its ω -limit are: 1) Q(n) is 

"n is the number represented by finite digits" but ¬Q( ω ); 2) 

R(n) is "(n+1)/n>1" but ¬R( ω ); 3) S(n) is "n+1=1+n" but 

¬S( ω ); 3) and so on. Below we also give the examples of 

not transferred properties for ordinals of higher power. 

In such a situation the proof of any property P(χ) has to be 

made by noninductive means. The same also concerns to the 

property "ordinal χ is countable". 

(3). Let us look at the structure of ordinals with an 

alternative point of view, where each ordinal is the union) of 

non-intersecting sets. Ordinal ω  is 
1

ω
n

n
ω

=
=∪ , 

2

1
ω ωnn

ω

=
=∪ , 

3 2

1
ω ωnn

ω

=
=∪  or 

2
3

1
ω ωnn

ω

=
=∪  and so 

on. And finally, 
1

ω ωi

nn

ωωω
=

=∪  for any i=1, 2, 3,.... We see 

that any ωi
, i=1, 2, 3, ... is at its maximum the ω -union of 

1ωi −
. But ωω

 can not be at its maximum the union of 
1ωω −
 

because ω iω −
= ωω

 and for any i=1, 2, 3, ... . Let us notice 

that this point of view ascends to Cantor considering of 
2

ω  

ordinal structure [1]. 

Thus, in a case of ωω
 we note the leap from all ω -

countable-unions to ωω
-union. Hence the proof of 

countability of ω -countable-union of countable ordinals can 

not be directly or inductively transferred to its first ωω
-

union. 

2. Two Methods of Renumbering of 

Elements of Ordinals 

The fist infinite ordinal ω  designates the set of natural 

numbers which is countable by definition. 

Ordinal ω2  is the limit for the sequence 1, 2, 3, 4, ..., ω , 

ω +1, ω +2, ω +3, ... and the proof of its countability is 

made by direct reordering of its elements therefore it is 

reduced to the countable sequence 1, ω , 2, ω +1, 3, ω +2, 4, 

ω +3, .... The same method is applicable for subsequent 

ordinals ω3 , ω4 , ω5 , ... . 

For ordinal 
2

ω  being a limit for the sequence ω , ω2 , 

ω3 , ... the above mentioned method of direct reordering is 

inapplicable and the proof of its countability is made by 

Cantor pairing function [1], which is equivalent to 

counterdiagonal renumbering of two-dimensional and infinite 

in two directions matrix which includes the elements of its 

non-intersecting subsets {1, 2, 3, ... }, { ω , ω +1, ω +2,... },  

{ ω2 , ω2 +1, ω2 +2, ... }, ... . 

For ordinal 
3

ω  the corresponding set can be represented 

by a 3-dimensional and infinite in three directions matrix. 

And since this ordinal it may be possible to use two various 

methods to proof its countability. 

Method 1 is based on counterdiagonal renumbering or 

Cantor tuple function [8]. For
3

ω we have the counterdiagonal 

planes in a 3-dimensional matrix. For any subsequent  we 

have the n-1-dimensional counterdiagonal hyperplanes in the 

corresponding n-dimensional matrixes. The number of 

elements mn,k in such counterdiagonal hyperplanes increase 

according to the law of figurate numbers [3]: 

mn,k = (k+1)(k(n-2)+2)/2,                         (1) 

where k =0, 1, 2,... is the order number of counterdiagonal 

hyperplane. 

Method 2 or the method of step-by-step reducing of 

dimensionality. As ordinal 
3

ω  includes ω  ordinals 
2

ω  then 

on the first step we perform counterdiagonal renumbering of 

ω  two-dimensional 
2

ω  matrixes, therefore we obtain the 

single 
2

ω matrix which on the second step is reduced by 

counterdiagonal renumbering to single natural set. To proof 

the countability of any ωn
 it demands to perform n-1 of 

similar steps to decrease dimensions of initial matrix. 

3. Two Opposite Conclusions Concerning 
ωω

 Countability 

Using these two methods it is possible to come to the 

opposite conclusions concerning ωω
 countability. 

Proposition-1. ωω
 is not countable. 

The proof is made directly by method 1. 

(1). Because ωω
 is representable by infinite matrix with 

infinite dimensions, therefore its first counterdiagonal 

hyperplane contains infinite number of elements ,1mω  = ω , 

so here the process of renumbering will be finished. 

(2). From the other side, the Cantor pairing function [1] 

which uniquely encode two natural numbers k1, k2 into a 

single natural number π(k1, k2) is defined by 

π(k1, k2)=0.5(k1+ k2)(k1+ k2+1)+ k2             (2) 

This definition is recursively generalized to the Cantor 

tuple function [8] 

   (3) 

For n= ω , taking into account that ω -1= ω  we have 
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       (4) 

So we get the equation which is unsolvable and the 

renumbering of elements of ω
ω

 set is not possible. 

Thereby the proposition-1 have been proved from both 

sides. 

We can formulate objection and counter-objection against 

these reasoning. 

Objection.  
Let us look at formula (1). According to method 1 for n=

ω , i.e. for any k-counterdiagonal-hyperplane in ωω
, we 

have: 

, =( +1)( ω 2) / 2km k kω +  =
2
ω ω+ 1k k k+ + ,        (5) 

e.g.: ,2 =5ω 3mω + , ,3 =10ω 4mω + , ,4 =17ω 5mω + ,..., 

3 2

, =ω ω ω 1mω ω ++ + . 

Since in ωω
 there are only ω counterdiagonal 

hyperplanes then ωω
 is the countable union of countable 

sets. 

Counter-objections. 

(1). According to formula (5) ωω
 is the union of ω  sets 

raised not more then to 3-th power. This goes against the 

nature of ωω
 set and against the Cantor normal form [2]. 

(2). Except counterdiagonal renumbering of elements of 

ωω
 set it is possible the alternate renumbering «on covers», 

e.g. for 2-dimentional infinite 
2ω  matrix (Fig. 1). 

 

Fig. 1. Alternate order of renumbering of 2-dimentional infinite 2ω matrix. 

Each k=0, 1, 2, 3,.. cover in n-dimensional ωn
matrix 

includes 
, =( +1)n n

n ke k k−  elements, i.e. in ωω
 matrix 

each k-cover includes 
, =( +1)ke k kω ω

ω − = ω-ω =0 

elements. 

Summary. Thus we see that depending on renumbering 

order of ωω
elements we get different conclusions 

concerning ωω
. But absolute mathematical truth should not 

depend on renumbering order of ωω
 matrix elements. It 

once again shows that any formula or property derived for 

natural numbers, as well as formula (5), can not be directly or 

inductively transferred to its ω  limit, as it have been stated 

in the introduction. Therefore similar transfer in the above-

stated objection is incorrect, as well as the objection itself. 

On the contrary, the proof (2) of the proposition-1 clearly 

shows that the rule of renumbering of previous ω
n

 ordinals, 

which is going back to Cantor, can not be extended to their 

n= ω -limit. 

Proposition-2. ωω
 is countable. 

The proof is made by method 2 of step-by-step decrease of 

dimensions in infinite sequence 
2

ω , 
3

ω , 
4

ω , ..., ordinals 

enclosed each other up to ω
ω

. 

We can formulate four objections against these reasoning. 

Objections. 
(1). This proof implicitly uses inductive procedure to 

transfer the property of all elements of ordered set 
2

ω , 
3

ω , 
4

ω , ... to its unattainable ω
ω

 limit. That can lead to a wrong 

result as it noted in the introduction. 

(2). To prove that 3
ω is countable it is previously 

necessary to renumber ω  copies of 2
ω  matrixes in 3

ω  

having received as a result a single 2ω  matrix which then is 

reduced to one natural row, that is to execute ω 1+  of 

counterdiagonal renumbering of 2ω  matrixes. For 4ω  it is 

necessary in the same way to renumber ω  copies of 3ω  

matrixes totally execute 2
ω ω 1++  renumbering of 2ω  

matrixes. For ωn  it is necessary to execute 

2 3
ω ω ω 1...n n− − ++ + + of such renumbering of 2ωn −  

matrixes. For ωω  it is necessary to execute not less than 

2ωω −  renumbering of 2ω  matrixes, that is equal to ωω  

renumbering. Thereby to prove that ωω  is countable it is 

necessary to execute such number of renumbering which 

countability we are going to prove. Therefore this proof, 

which implicitly uses the still an unproven subject of the 

proof, is unconvincing. 

(3). Let's look at the problem from the other side. ωω  set 

contains not less than 2ωω −  of 2ω  sets. Thereby if we 

reduce each 2ω  set to ω  set we obtain 2ωω −  set i.e. again 

initial ωω  set as unsolvable "begging the question" arisen. 

(4). The method 1 is based on Cantor tuple function which 

allows us unambiguously to calculate for each element of 

ωn
 its position in a resultant natural sequence. On the 

contrary the inverse Cantor tuple function allows us uniquely 

to decompose natural numbers set to ωn
 set. Method 2 for 

any ordinal ωn
 does exactly the same, i.e. it formulates 

another tuple function with the same properties. But proof 2 

of proposition-1 states that for ordinal ωω
 the tuple function 

and its inversion does not exist. 

On the adduced four arguments we did not find any 

counter-objections. 

Summary. We considered two antithesis about 

countability of ωω
 ordinal and their proof. On ratios of 

possible objections and counter-objections the proposition-1 

is more convincing. For a final choice from these two 

alternatives it is desirable to find such property of ωω
 

ordinal, proceeding from the used paradigm of its matrix 

representation, which proof can't be disproved neither by 

method 1, nor by method 2. 
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4. The Cardinality of ωωωωω  

Theorem-1. ωω  cardinality is equal to cardinality of 

powerset of natural numbers or continuum 02 c
ℵ =  

Proof. 
Powerset of natural numbers includes: all subsets of one 

number, all subsets of two numbers and so on up to all 

subsets of infinite natural numbers. 

On the other hand, all subsets of two numbers are 

representable in a two-dimensional infinite 
2

ω  matrix (Fig. 

2) and the first line of this matrix contains subsets of one 

element. 

 

Fig. 2. Two-dimensional infinite 2ω  matrix represented all subsets of two numbers. 

All subsets of three numbers are representable in 3-

dimensional infinite 
3

ω  matrix at which the first plane 

contains subsets of one and two elements. 

And so on to all subsets of natural numbers which is 

representable by infinite matrix with infinite number of 

dimensions and this matrix is corresponded to ωω
 set. 

Thereby this theorem have been proved. 

Consequence 1. Continuum hypothesis follows from this 

proof because in the ascending and continuous sequence of 

all countable transfinite ordinals ω ,..., 
2ω , ..., 

3ω , ..., 

ωn
, ... ordinal ωω

 is the first noncountable one and it is 

equal to cardinality of powerset of natural numbers 02
ℵ

=с. 

Therefore its cardinality is the first one after 0ℵ  i.e. 1ℵ . 

Consequence 2. The subsequent ordinals of ascending ω -

exponentiation of ωω
 represent powerset of ordinals of 

previous degree of ω -exponentiation of ωω
 thereby ω

ωω
, 

ω
ωωω

, ... correspond to cardinals 2ℵ , 3ℵ , 4ℵ , … . Thus, 

in a case of cardinal 2ℵ = 12ℵ
 we should apply the theorem-1 

proof to transfinite matrix of ωω
-length instead of ω -length 

and with ωω
 number of dimensions instead ω  number of 

dimensions. This matrix represents ordinal ω
ωω

. And so on. 

5. Discussion 

At the turn of XX century in the history of mathematics it 

has been occurred the significant but not noticed event. Prior 

to that mathematics revealed or took from some unknown 

storage the absolute truths such as multiplication table, 

squaring the circle, Fourier transform, etc. But in the last 

third of XIX century in mathematics there were began to 

appear theories and hypotheses [5]. But any theory represents 

only some set of initial intuitively or substantially reasonable 

provisions intended by means of certain rules and 

conclusions logically convincingly and consistently to 

explain some properties and phenomena of external or mental 

world. Thus for the similar explanation may be used several 

different theories and the adoption of one or another theory is 

not a consequence of its absolute truth, but a matter of public 

agreement. One or other social community might prefer one 

or another theory and follows it in accordance with the 

freedom of its choice. The same situation has occurred in 

respect of numerous set theories [9]. 

Moreover the degree of public recognition of any theory 

in natural sciences area is determined by predictive 

adequacy of concrete theory, since these predictions are 

usually available for further experimental testing. 

Mathematics is not a science with possibility of 

experimental verification of its theoretical provisions in 

area of set theories. Instead of experimental validation of 

mathematical findings the only criterion of its truth remains 

the consistency of its conclusions in the framework of the 

theory itself, but does not the presence of contradictions 

with the conclusions of other theories. 

Further, any result in any theory can not be wrong iff it is 

not consistent with other results in other theory obtained 

from a different point of view and using a different proof. 

Results can be wrong iff the point of view is wrong or the 

proof includes errors. Indeed it is impossible to disprove the 

theorems in Euclidean geometry on the base of results in 

spherical geometry. In such a situation, at the degree of 

public acceptance of one or another set theory and its results 

there begin to influence professional consents, political 

considerations and teleological grounds, which is not always 

compatible with the dispassionate scientific approach to the 

evidences [6]. 

Numerous subtleties of such public consents in most 

accepted version of set theory force some professors and 

lecturers clearly to warn their audience about these subtleties 

in their textbooks [10], we quote: "In fact, we have already 

reached a dangerous border where visual representation of 

sets lead to a contradiction", and also: "Here again we come 

to the dangerous border of paradoxes and so we have to be 

expressed evasively". 

6. Conclusion 

As we above have seen the question of countability or 

uncountability of some ordinals also depends on a particular 

viewpoint on the structure of such ordinals. So in most 

popular set theory according to the axiom of exponentiation 

of ordinals it is considered that ordinal ωn
 is the union or 

sum of intersecting segments of ordinals of previous 
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sequence of ω -exponentiation, i.e. 
1

ω ω
nn i

i =
=∪  or 

1
ω ω

nn i

i =
=∑  [4] that ascends to Cantor natural form [2]. 

According to that 
1

ω ωi

i

ωω
=

=∪  and ωω
 seems like ω -

countable union of countable intersecting ordinals, so ωω
 is 

also countable. But it is possible the alternate point of view: 

1
ω ω

n j
n j

ii

ω −

=
=∪  for any j=1, n-1, thus 

1
ω ωn

ii

ωωω
=

=∪  for 

any n, so ωω
 is ωω

 -union of foregoing non-intersecting 

segments of ordinals of equal exponentiation, that leads to 

the conclusion that ωω
 is uncountable. 

Our study shows that in the domain of transfinite sets the 

different points of view and its findings have the legal right 

to coexist as Nels Bohr's principle of complementarity in 

physics. Acceptance or rejection of a particular viewpoint in 

this area is not the subject of absolute truth but the subject of 

a particular public agreements. 
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