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Abstract: Physiological waves, much like the waves of some other physical phenomena, consist of non-linear and 

dispersive terms. In studies involving patho-physiology, models on arterial pulse waves indicate that the waveforms behave 

like solitons. The Korteweg-deVrie (KdV) equation, which is known to admit soliton solutions, is seen to hold well for 

arterial pulse waves. The foregoing underpins the need for detailed knowledge of the construction of solitons. In the light of 

this, plane wave solution would fail to yield the desired goal, let alone where arterial pulse waves are physiological waves 

that decompose into a travelling wave representing fast transmission phenomena during systolic phase and a windkessel 

term representing slow transmission phenomena during diastolic phase.  This paper elucidates the construction of the 

solitons that arise from the so called KdV equation. The goal is to enhance an authentic analysis of soliton-based clinical 

details. 
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1. Introduction 

A major issue that physical problems contend with is the 

form in which a partial differential equation (PDE) appears. 

In many cases we suffer the sight of hideous PDEs that 

arise from physical problems. Such PDEs appear in some 

form that defies mathematical analysis. Lamentably, 

understandable solution is imperative if physiological 

exigencies must have mathematical analysis. We should 

note that solutions may not be approximated by plane wave 

solution in physiological cases; they may require 

exponentially decaying solutions. Many conditions that do 

not apply to physiological phenomena may hold well for 

other similar physical phenomena. To this end, it would be 

customary to talk of physiological wave to stress the 

divorce between such wave and a group of other physical 

waves. In general, two major wave phenomena are the 

peaking and steepening morphologies. Solitons are isolated 

waves that travel without dissipating energy. They are a 

product of wave phenomena. Many studies on waves show 

that physiological waves are known to behave like solitons 

(rather than sinusoid). Arterial pulse waves are 

physiological waves that decompose into a travelling wave 

representing fast transmission phenomena during systolic 

phase and a windkessel term representing slow 

transmission phenomena during diastolic phase [1]. 

Solitons are evident at the systolic phase, and the diastolic 

phase is marked by slow flow waves. In this regard, it was 

indicated [2] that soliton-based signal processing, together 

with a windkessel model may be used to compute blood 

pressure wave in large proximal arteries. By simple theories, 

linear waves are subject to superposition. Interestingly, 

non-linear waves are amenable to superposition [3]. The 

suitability of constructing soliton solutions derives from 

linear superposition of non-linear waveform so obtained 

from any given problem. 

An equation that holds well in describing various 

physical phenomena is the Korteweg de-Vries (KdV) 

equation [4]. It is used in describing phenomena such as: 

shallow water waves with weakly restoring forces, ion 

acoustic waves in plasma, and acoustic waves on a crystal 

lattice. It was shown [5, 6, 7] that the KdV equation also 

holds well in describing pulse waveforms that result from 

left ventricular ejection. It is a non-linear dispersive wave 

equation that is seen to admit soliton solutions. (Note that 

we have said that the KdV equation admits soliton solutions; 

such solutions may be in addition to the periodic solutions 

that the non-linear problem may produce [8]). Remarkably, 
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only two solitons may be enough to describe the peaking 

and steepening wave phenomena. The question of how 

linear superposition of non-linear waves can be achieved is 

answered by careful construction of solitons. Although the 

inverse scattering method of solution of some PDEs due to 

Gardner et al. [9, 10] may bring to bear on solution of the 

KdV equation, two methods of such construction shall be 

discussed in this paper. One of the methods, due to Malfliet 

[11, 12], is the hyperbolic tangent (tanh) method. The other 

method, due to Hirota [13], is the bilinear method. Each of 

these methods has its peculiar way of furnishing solitons. 

We do not lose cognizance of the existence of some other 

methods of solution of the KdV equation. A particular case 

is the homotopy analysis method [14, 15]. The analysis of 

physiological waves relies abundantly on solitons. Much as 

two solitons can describe any patho-physiological content 

of a human subject (as shown by Nzerem and Alozie [6], 

Nzerem and Ugorji [7]), it would be more rewarding to 

observe the behavior of more solitons in the pressure wave 

spectrum of the cardio-vascular system. This line of 

thought gives credo to the bilinear method, due to its 

propensity to furnish as many solitons as necessary, albeit 

with expensive algebra. 

2. Constructing Solitons via Methods of 

Solution 

2.1. The Tanh (Hyperbolic Tangent) Method of Solution 

In the previous section we have said that KdV equation 

describes physiological waves. In this section we shall use 

two methods to construct soliton solution of the KdV 

equation. The KdV equation is given by  

ut + auux+ buxxx = 0                    (2.1) 

where a and b (> 0) are parameters. Equation (2.1) shows 

the dependence of the rate of change of the wave’s height 

in time on the sum of the nonlinear term (the amplitude 

effect), and the dispersive term (that causes waves of 

different wavelengths to propagate at different velocities). 

Our task in this sub-section is to construct one soliton 

solution (1SS) of the equation (2.1). 

In equation (2.1), the parameter b represents a dispersive 

effect. A brief description of the tanh method is given 

below [16] .Suppose 

ut = G(u, ux, uxx, …) .                    (2.2) 

Does equation (2.1) admits exact traveling wave solution? 

If yes, then we wish to compute it. In the first place, the 

independent variables t and x are combined into a new 

variable, ξ = k(x – Vt), which defines the traveling frame of 

reference, k > 0 being the wave number and V the velocity 

of wave. In most cases ODEs are more tractable than PDEs. 

This method seeks a reduction of PDEs to ODEs so that 

solutions may be easier.  By replacing the variable u(x, t) 

by U(ξ),equation (2. 1) is transformed into 
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We observe that equation (2.3) is an ODE instead of a 

PDE. We then seek exact solution of the ODEs in tanh form; 

otherwise an approximate solution may be sought. 

Introduce a new variable Y = tanh ξ into the ODE. Now the 

coefficient of the ODE in U(ξ) = F(Y) solely depends on Y 

because 
ξd

d
 and subsequent derivatives in (2.3) are 

replaced by ( )
dY

d
Y 21− . 

We seek solution as finite power series in Y in the form 
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Introduce Y = tanh(ξ) and thus replace equation (2.5) by 
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From equation (2.4) we get 
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Substitute the above equations into equation (2.6) (with 

the range of summation assumed known) to get 
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We note a salient aspect of this method: the terms of the 

series must terminate, and thus we do not expect recurrent 

relations typical of infinite series solutions. After due 

algebraic details we have arrived at the equation (2.7). We 
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equate the highest two powers of n = N to get 2N + 1 = N 

+ 3 i.e. N = 2. With this, equation (2.4) reads 

F(Y) = a0 + a1Y +a2Y
2                         (2.8) 

Substitute (2.8) into (2.6), noting that 
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With this we get 

– kV[(1 – Y2)(a1 + 2a2Y)] + k[(a0 + a1Y + a2Y
2)(1 – Y2)(a1 

+ 2a2Y)] 

+ bk3[(1 – Y2)(–2a1 – 16a2Y + 6a1Y
2 + 24a2Y

3)]=0. 

The expanded form yields 

– kV(a1 + 2a2Y – a1Y
2 – 2a2Y

3) + 
2

102120
2
110 )3()2([( YaaaaYaaaaak −+++  

]23)22( 52
2

4
21

3
20

2
1

2
2 YaYaaYaaaa −−−−+  

[ ] 0246408162 5
2

4
1

3
2

2
121

3 =−−++−−+ YaYaYaYaYaabk  (2.9) 

For the series to vanish, the coefficients of the powers of 

Y must vanish identically. Thus, we equate the coefficient 

of each of the powers of Y to zero. 

In doing so we find that the coefficients that are enough 

to yield a desired result are those of Y
2 

and Y
5
, which read 

respectively, 

a1k[V + 3a2 – a0 + 8bk2] = 0                (2.10) 

–2a2k[a2 + 12bk2] = 0                    (2.11) 

If a1=a2=0 we get, in equation (2.10), V = a0-8bk. It is 

permissible to use a2 = –12bk
2
 in (2.11). Thus, for a1= 0 we 

have, using (2.8) 

F(Y) = a0 – 12bk2Y2                     (2.12) 

Suppose the solution vanishes for ξ→ ∞(Y → 1), we get 

F(Y) = 12bk2 (1 – Y2) with V = 4bk2            (2.13) 

Or, using the original variables, we get the 1SS 

u(x, t) = 12bk2 sech2k(x – Vt).              (2.14) 

This is a solitary wave in a bell-shape, as shown in 

Figure 2.1. A variety of methods, such as, tanh-sech 

method, extended tanh method, hyperbolic function method, 

etc. may be engaged in finding an exact solitary wave 

solution of nonlinear PDEs. The main issue is the relative 

ease with which multi-solitons can be generated from ISS.  

2.2. Bilinear Method 

The bilinear method [13] provides an elegant direct 

technique for constructing exact solutions to many non-

linear PDEs. If one is only interested in finding multi-

soliton solutions the best tool is the bilinear method [17, 

18]. So long as the bilinear form is obtained, an algorithmic 

procedure follows. The method relies on calculus and 

algebra. In application, the bilinear method requires [19]: 

(i) A change of dependent variable; 

(ii) Introduction of a novel differential operator; 

(iii) A perturbation expansion to solve the emerging 

bilinear equation. 

Dependent variables are in their best forms when soliton 

solutions appear as a finite sum of exponentials. Let a 

variable u be given by 

Mu x detlog2 2∂=                       (2.15) 

where the entries of M are polynomials of exponentials 

e
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. We want to  obtain  a form that would facilitate the 

construction of  soliton solutions. Defined a new dependent 
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Suppose f(x) and g(x) is some ordered pair of functions. 
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where m and n are non-negative integers. There is linearity 

in both arguments of the differential operator, and thus it is 

called a bilinear operator. The bilinear operators in 

equations (2.17) and (2.18) have the following properties: 
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Let P(Dx, Dt) be a polynomial in Dx and Dt. Then, from (2.19) and (2.22) we progress as follows: Let  
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Consider once more, the KdV equation (2.1) in the form 

uxxx + 6uux + ut = 0                       (2.25) 

The present aim is to make it amenable to the bilinear 

method. We seek a bilinear form. To do this we carry out 

the dependent variable transformation 
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With this, equation (2.25) becomes 

2(logf)xxt + 3∂x(u
2) + u3x = 0               (2.27) 

Integrating once with respect to x to get 

2(logf)xt + 3u2 + u2x = 0                               (2.28) 

We therefore calculate the relevant quantities as follows: 
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Substitute (2.29) - (2.31) in (2.28), and perform the 

necessary algebra, to get 

ffxt – fxft + ff4x – 4fxf3x + 03 2

2 =xf          (2.32) 

The above (2.32) is a quadratic equation in f2x. Define 

Hirota D-operator by 
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Consider the two relations  

DxDt  f⋅f = 2(ftx f – ft fx)                         (2.34) 
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Add (2.34) to (2.35) to get the bilinear form 

)()( 3 ffBffDDD xtx ⋅≡⋅+ = 0; (see equation (2.32)) (2.36) 

where B abbreviates the bilinear operator for the KdV 

equation. The above bilinear equation therefore holds well 

for the KdV equation. 

2.3. Solitons by Bilinear Method 

The bilinear form (2.36) enables us to construct soliton 

solutions for the KdV equation. Consider a class of bilinear 

equations of the form 

P (Dx, Dt, …) f⋅f		≝ )(0)( 3 ffBffDDD xtx ⋅≡=⋅+     (2.37) 

where P  is a polynomial in the Hirota partial derivatives D. 

We start with the zero-soliton solution ((OSS) or the 

vacuum).The KdV equation has a trivial solution u ≡ 0. We 

therefore require the corresponding f. From equation (2.16) 

we see that f =e
2∝ (t) x + � (t)

 is suitable for equation (2.2 6). 

We are free to choose f = 1 as an OSS. It solves equation 

(2.37) so long as 

P (0, 0, …) = 0.                            (2.38) 

Multi-soliton solutions can be obtained by finite 

perturbation expansions around the vacuum f = 1. To do 

this, seek a series solution of the form 

n
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for some unknown functions f1(x,t), f2(x,t),.., where υ  is a 

formal expansion parameter. Substituting (2. 39) into (2.36) 

and equating to zero the powers of υ  yield  

O(υ 0) : B(1⋅1) = 0                              (2.40) 

O(υ 1) : B(1⋅f1 + f1⋅1) = 0                     (2.41) 

O(υ 2) : B(1⋅f2 + f1⋅f1 + f2⋅1) = 0            (2.42) 

O(υ 3) : B(1⋅f3 + f1⋅f2 + f2⋅f1 + f3⋅1) = 0 

O(υ 4) : B(1⋅f4 + f1⋅f3 + f2⋅0(f2 + f3⋅f1 + f4⋅1) = 0    (2.43) 
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For the KdV equation, the operator B is defined in (2.36). 

Since the KdV equation admits N–solition solutions [20] 

equation (2.39) will terminate at n = N<∞ (this is an 

essential feature of Hirota method – a case where there 

exists a finite number of terms of the series), provided f1 is 

the sum of precisely N simple exponential terms. We obtain 

ISS (N = 1) from  

f1 = expθ = exp (kx – ωt + δ), 

where k, ω and δ are constants. The dispersion law 

ω = k3                                          (2.45) 

is determined by (2.41). Equation (2.42) permits us to set f2 

= 0, and in effect we can take fi = 0 for i > 2. Let υ = 1, and 

we get 

f = 1 + f1 = 1 + expθ = 1 + exp(kx – ω+ δ). 

Substitute f in (2.28) with (2.45), and get 
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For a 1SS we write 
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where δωζ +−= tkx . The last expression of equations 

(2.46) takes the form of Padé approximant (Curry (2008)), 

which describes the function 
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Let k = 2K; we get 

u(x, t) = 2K2sech2(Kx – 4K3t + δ/2) .             (2.47) 

The above is a pulse shaped solitary wave solution of the 

KdV equation, and it compares to the solution (2.14) (see 

Fig 2.1). 

The construction of the 2SS can help in producing N (>2) 

solutions. Consider the 1SS (2.47) and, for simplicity, write 

k= K=1,δ =0. With these we get 
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The above equation (2.49) is a solution to (2.36).We 

need to generalize this solution to cater for N-soliton 

solutions. We had assumed that f possesses an asymptotic 

expansion about the parameter υ  (see equation (2.39)). 
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Equation (2.51) can be decomposed into a series of 

equations, requiring each term with common power of υ  to 

vanish. Using equations (2.34) and (2.35) we have the 

equation for f1 as 
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Introduce the following notation: 
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On the choice of fn = 0, for n = 2, 3,…in equation (2.51) 

we still obtain the solitary wave solution. We note the 

linearity of equation (2.53a).This linearity is very crucial in 

generating multi-soliton solutions to the KdV equation 

under our consideration. Assume now that 

)exp()exp( 211 γγ +=f                           (2.54) 
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From (2.53b) we find that 
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Substitute f in (2.16), and choose 
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We can generalize to any exact N-soliton solution just by 

putting 

∑
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Fig 2.1. Solitary wave 
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Fig 2.2. (Graphs A-F) 2-Soliton Solutions (2SS) at various distances 

3. Conclusion 

The study of human arterial pulse waves is synonymous 

with the study of the cardio-vascular system. Waveforms 

that conform to normal arterial morphology are said to be 

physiological. Mathematical models of pressure and flow 

point to the KdV equation as a good descriptor of arterial 

waveforms. To this end, studies on the behavior of the 

solution of the equation, with the aim of providing a clue to 

clinical needs are engaging much attention. The soliton 

solutions of the equation have shown that arterial 

waveforms behave like solitons, true in every sense. The 

need to obtain multi- soliton solutions therefore arises. It is 

when such solutions are obtained that a better 

understanding of the behavior pulse-induced signals and a 

good prognosis may be achieved. Varieties of algebraic 

methods that yield solitons were mentioned here; the tanh 

method and the bilinear method were considered for further 

analysis. We saw that the superposition of solitons is 

achievable, especially by using the bilinear method of 

solution. Therefore, relative ease with which multi-solitons 

can be constructed resides in the bilinear method. The 

multisolitons obtainable from this method can help in 

wave-based signaling of the patho-physiological condition 

of a human subject. 
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