Pure and Applied Mathematics Journal 2014; 3(3): 66-69 Published online July 10, 2014 (http://www.sciencepublishinggroup.com/j/pamj) doi: 10.11648/j.pamj.20140303.12 ISSN: 2326-9790 (Print); ISSN: 2326-9812 (Online)

A note on localization of supplemented modules

Esra Öztürk^{*}, Şenol Eren

Ondokuz Mayıs University, Faculty of Sciences and Arts, Department of Mathematics 55139, Kurupelit-Samsun, Turkey

Email address:

esraozturk55@hotmail.com (E. Ozturk), seren@omu.edu.tr (S. Eren)

To cite this article:

Esra Öztürk, Şenol Eren. A Note on Localization of Supplemented Modules. *Pure and Applied Mathematics Journal*. Vol. 3, No. 3, 2014, pp. 66-69. doi: 10.11648/j.panj.20140303.12

Abstract: In this paper we study on commutative rings with identity and all modules are unital left *R*-modules unless otherwise stated. We define the concept of small submodules for localization modules and additionally, we present the relation between an *R*-module *M* and an R_p -localization module M_p for all maximal ideals of *R* in view of being supplemented.

Keywords: Small Submodule, Supplemented Module, Multiplicative Closed Set, Localization Module

1. Introduction

Throughout this paper *R* is a commutative ring with unity and all modules are unital left *R*-modules. $N \le M$ means that *N* is a submodule of *M*. Any submodule *S* is called a small submodule of *M* if for every proper submodule *A* of *M*, $M \ne A + S$. We will use the notation $S \ll M$ to indicate that any submodule *S* is small in *M*. Let *M* be an *R*-module and *N* be a submodule of *M*. A supplement of *M* K of *M* minimal with respect to property M = N + K equivalently, M = N + K and $M \cap K \ll K$. *M* is called supplemented if every submodule of *M* has a supplement in *M*. Supplemented modules are useful in characterizing semiperfect and perfect rings [10].

Suppose that we have a commutative ring R with a prime ideal P of R. We first introduce an equivalence relation ~ on ther set $R \times (R \setminus P)$, we write $(r, t) \sim (r', t')$, where $r, r' \in R$ and $t, t' \in R \setminus P$, if there exists $t'' \in R \setminus P$ such that t''tr' = t''t'r. This equivalence relation partitions the set $R \times (R \setminus P)$; the set of equivalence classes is denoted by R_p ; the equivalence class to which the element (r, t) of $R \times (R \setminus P)$ belongs is denoted by $\frac{r}{t}$. By defining well-known addition and multiplivation mappings on R_p , the classical construction of the localization of a commutative ring is obtained at a prime ideal [14].

2. Rings and Modules

First let us recall some basic concepts of ring theory.

Definition 1.

A ring R is a non-empty set together with two binary operations $(a, b) \mapsto a + b$ and $(a, b) \mapsto ab$ (addition and multiplication, respectively), subject to the following conditions:

i) the set R together with addition is an abelian group

ii) a(bc) = (ab)c for all $a, b, c \in R$

iii) a(b+c) = ab + ac and (b+c)a = ba + ca for all $a, b, c \in R$.

Definition 2.

A ring R is said to be commutative if ab = ba for all $a, b \in R$.

Definition 3.

An element of *R* is called a unity and is denoted by 1_R , if $1_R a = a 1_R = a$ for all $a \in R$.

Definition 4.

A non-zero element a in a ring R is said to be a left [resp. right] zero divisor if there exists a non-zero $b \in R$ such that ab = 0 [resp. ba = 0]. A zero divisor is an element of R which is both a left and a right zero divisor.

Definition 5.

A commutative ring R with identity and no zero divisors is called an integral domain.

Definition 6.

By a left ideal of a ring R we mean a nonempty subset A of R such that $a - b \in A$ and $ra \in A$ for all $a, b \in A$ and $r \in R$.

Similarly, by a right ideal of R we mean a nonempty

subset B of R such that $a - b \in B$ and $ar \in B$ for all $a, b \in B$ and $r \in R$.

A left ideal of R which is at the same time a right ideal of R is called an ideal of R. If R is a commutative ring, then the left ideals, right ideals and ideals of R coincide. An ideal of R is called proper if it is different from R.

Definition 7.

An ideal P in a ring R is said to be prime if $P \neq R$ and for any ideals A, B in R, $AB \subset P \Longrightarrow A \subset P$ or $B \subset P$.

Proposition 1.

If *P* is an ideal in a ring *R* such that $P \neq R$ and for all $a, b \in R$ $ab \in P \implies a \in P$ or $b \in P$, then *P* is prime.

Definition 8.

An ideal M in a ring R is said to be maximal if $M \neq R$ and for every ideal N such that $M \subset N \subset R$, either N = M or N = R.

Remark 1.

Let R be a commutative ring with identity. Then every maximal ideal of R is prime.

Definition 9.

A non-empty subset S of a ring R is multiplicative (closed) provided that $1_R \in S$ and $ab \in S$ for all $a, b \in S$

Example 1.

The set S of all elements in a nonzero ring with identity that are not zero divisors is multiplicatively closed.

Remark 2.

It is clear that a proper ideal P of R is prime if and only if R - P is multiplicatively closed.

2.1. Modules

Definition 10.

Let *R* be a ring, a (left) R-module is an additive abelian group *A* together with a function $R \times A \rightarrow A$ (the image of (r, a) being denoted by ra) such that for all $r, s \in R$ and $a, b \in A$:

i) r(a + b) = ra + rb*ii*) (r + s)a = ra + sa*iii*) r(sa) = (rs)a

Definition 11.

Let *R* be a ring, *A* an *R*-module and *B* a non-empty set of *A*. B is a submodule of *A* provided that *B* is an additive subgroup of *A* and $rb \in B$ for all $r \in R$, $b \in B$.

Definition 12.

Let A and B be modules over a ring R. A function $f: A \rightarrow B$ is an R-module homomorphism provided that for all $a, b \in A$ and $r \in R$:

$$f(a + b) = f(a) + f(b)$$
 and $f(ra) = rf(a)$

Definition 13.

A submodule K of an R-module M is called superfluous or small in M written $K \ll M$, if, for every submodule

$L \subseteq M$, the equality K + L = M implies L = M.

Definition 14.

Let U be a submodule of the R-module M. A submodule $V \subseteq M$ is called a supplement of U in M if V is a minimal element in the set of submodules $L \subseteq M$ with U + L = M.

Proposition 2.

V is a supplement of U if and only if U + V = M and $U \cap V$ is superfluous in V.

3. Localization of Modules

Definition 15.

Let R be a ring and M be an R-module. Let S be a multiplicatively closed set in R. Let T be the set of all ordered pairs (x, s) where $x \in M$ and $s \in S$. Define a relation on T by $(x, s) \sim (x', s')$ if there exists $t \in S$ such that t(sx' - s'x) = 0. This is an equivalence relation on T and we denote equivalence classes of (x, s) by $\left\|\frac{x}{s}\right\|$. Let $S^{-1}M$ denote the set of equivalence classe of T with respect to this relation. We can make $S^{-1}M$ into an R-module by setting

$$\frac{x}{s} + \frac{y}{t} = \frac{tx + sy}{st} , a\left(\frac{x}{s}\right) = \frac{ax}{s}$$

The R-module $S^{-1}M$ is called a quotient module or a module of quotients [2].

Remark 3.

If $0 \in S$, then $S^{-1}M = 0$. In our discussion of quotient modules we shall always assume that $0 \notin S$ [2].

Proposition 3.

[2], let R be a ring and S be a multiplicatively closed set in R. Let M be an R-module and N and K be submodules of M. Then,

1)
$$S^{-1}(N + K) = S^{-1}N + S^{-1}K$$

2) $S^{-1}(N \cap K) = S^{-1}N \cap S^{-1}K$

3) $S^{-1}(NK) = (S^{-1}N)(S^{-1}K)$

Definition 16.

Let R be a commutative ring with identity, M be an R-module, and S = R - P be a multiplicatively closed subset of R such that P is a prime ideal of R. Then the module of quotients $S^{-1}M$ is called the localization of M at P and is denoted M_P [5].

Proposition 4.

Let R be a ring, M be an R-module and A and B be submodules of M. Then A = B if and only if $A_P = B_P$ for every maximal ideal P of R [5].

4. Localization of Supplemented Modules

Definition 17.

Let R be a ring, S be a multiplicatively closed subset of R, M be an R-module, $S^{-1}N$ be a submodule of the

quotient module $S^{-1}M$. If $S^{-1}K + S^{-1}L = S^{-1}M$ implies $S^{-1}L = S^{-1}M$ for every submodule $S^{-1}L \subseteq S^{-1}M$ then the submodule $S^{-1}K$ of $S^{-1}M$ is called small in $S^{-1}M$.

4.1. Properties of Superfluous Submodules

Proposition 6.

Let $S^{-1}K$, $S^{-1}L$, $S^{-1}N$ and $S^{-1}M$ be $S^{-1}R$ -modules.

- 1. If $S^{-1}f: S^{-1}M \to S^{-1}N$ and $S^{-1}g: S^{-1}N \to S^{-1}L$ are two epimorphisms, then $S^{-1}g_0S^{-1}f$ is superfluous if and only if $S^{-1}f$ and $S^{-1}g$ are superfluous.
- 2. If $S^{-1}K \subseteq S^{-1}L \subseteq S^{-1}M$, then $S^{-1}L \ll S^{-1}M$ if and 2. If S = K = S L = S M, then $S = L \ll S^{-1}M$ if and only if $S^{-1}K \ll S^{-1}M$ and $S^{-1}L/_{S^{-1}K} \ll$ 3. If $S^{-1}K_1, S^{-1}K_2, ..., S^{-1}K_n$ are superfluous modules of $S^{-1}M$, then $S^{-1}K_1 + S^{-1}K_2 + ... + S^{-1}K_n$ is also superfluence in $S^{-1}M$.
- superfluous in $S^{-1}M$.
- 4. For $S^{-1}K \ll S^{-1}M$ and $S^{-1}f: S^{-1}M \to S^{-1}N$ is a homomorphism we get $S^{-1}f(K) \ll S^{-1}N$.
- 5. If $S^{-1}K \subseteq S^{-1}L \subseteq S^{-1}M$, then $S^{-1}L$ is a direct summand in $S^{-1}M$, then $S^{-1}K \ll S^{-1}M$ if and only if $S^{-1}K \ll S^{-1}L.$

Proof.

It is easily seen dually to the proof of the properties of superfluous submodules given for an *R*-module *M*.

Definition 18.

and S⁻¹V be submodules of quotient Let S⁻¹U module S⁻¹M where M is an R-module and S is a multiplicative closed subset of a ring R. $S^{-1}V$ is a supplement of $S^{-1}U$ in $S^{-1}M$ if and only if $S^{-1}U +$ $S^{-1}V = S^{-1}M$ and $S^{-1}(U \cap V)$ is superfluous in $S^{-1}V$.

Definition 19.

An $S^{-1}R$ -module $S^{-1}M$ is called supplemented if every submodule of $S^{-1}M$ has a supplement in $S^{-1}M$.

Proposition 7.

Let R be a ring, M be an R-module and A be a submodule of M. Then $A \ll M$ if and only if $\ A_P \ll M_P$ for every maximal ideal P of R.

Proof.

 (\Rightarrow) Suppose $A \ll M$ and $A_P + B_P = M_P$ for a submodule B_P of M_P . It is easy to see $(A + B)_P = M_P$ from proposition 3. So, the equality A + B = M can be verified from proposition 4. Hence we can say B = M since $A \ll M$. Therefore, $B_P = M_P$.

 (\Leftarrow) Straight forward.

Proposition 8.

Let R be a ring, M be an R-module, A be a submodule of M and P be an arbitrary ideal of R. Then there is a supplement of A in M if and only if there is a supplement of A_P in M_P .

Proof.

 (\Rightarrow) Suppose M is supplemented. Then, there is a submodule B of M such that A + B = M and $A \cap B \ll$ B. Therefore $(A + B)_P = M_P$ and finally $A_P + B_P = M_P$ is obtained. Also $(A \cap B)_P \ll M_P$ because of the previous proposition. Hence B_P is a supplement of A_P in M_P.

 (\Leftarrow) Straight forward.

Corollary 1.

Let R be a ring and M be an R-module. Then M is supplemented if and only if M_P is supplemented for all maximal ideal P of R.

Proposition 9.

 $f: M \rightarrow N$ be an R -module Let R be a ring, homomorphism and $S \subseteq R$ be a multiplicative closed subset. Then $S^{-1}(f(M)) = S^{-1} f(S^{-1}M)$.

Proof.

Straight forward.

Proposition 9.

Let M be an R-module. If M is a supplemented module then the homomorphic image of M_P is a supplemented module for all maximal ideal P of R.

Proof.

Let $f: M \to N$ be an R-module homomorphism and $S^{-1}f: M_P \rightarrow N_P$ be an R_P -module homomorphism via $\frac{m}{s} \mapsto \frac{f(m)}{s}$. Since the homomorphic image of a supplemented module is supplemented f(M) is also supplemented in this situation. So $f(M)_P$ is supplemented from corollary 1. Hence, $S^{-1} f(M_P)$ is supplemented because of the previous proposition.

Acknowledgement

We would like to thank the referee for the valuable suggestions and comments.

2010 Mathematics Subject Classification: 16D10

References

- Alizade, R., Pancar, A., 1991. Homoloji Cebire Giriş, [1] Ondokuz Mayıs Üniversitesi Fen Edebiyat Fakültesi, Samsun.
- Anderson, F.W., Fuller K.R., 1974, Rings and Categories of [2] Modules, Springer-Verlag, New York-Heidelberg-Berlin.
- Callialp, F., Tekir, Ü., 2009. Değişmeli Halkalar ve Modüller, [3] Birsen Yayınevi, İstanbul.
- Faith, C., 1976, Algebra II: Ring Theory, Springer- Verlag, [4] Berlin.
- [5] Hungerford, T.W., 1973. Algebra, Springer-Verlag, New York.
- Lam, T. Y., Lectures on modules and rings, ser. Graduate [6] texts in Mathematics. New York: Springer, 1999, vol. 189.
- [7] Larsen, M.D., McCarthy, P.J., 1971. Multiplicative Theory of Ideals, Academic Press, New York and London.

- [8] Moore, D.G., 1968. Prime and Radical Submodules of Modules over Commutative Rings, Vol.30, No.10, 5037-5064.
- [9] Mohamed, S. H. and Müller, B. J., Continuous and discrete modules, ser. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 1990, vol. 147.
- [10] Sharpe, D.W., Vamos, P., 1972. *Injective Modules,* Cambridge University Press.
- [11] Taşçı, D., 2007. Soyut Cebir, Alp Yayınevi, Ankara.

- [12] Northcott, D.G., 1968. *Lessons on Rings, Modules and Multiplicity*, Cambridge University Press.
- [13] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, 2006. *Lifting Modules*, Supplements and projectivity in module theory, Front. Math., Birkhauser Verlag, Basel.
- [14] Wisbauer, R., 1991. Foundations of Module and Ring Theory, Gordon and Breach (Philadelphia).
- [15] Shang, Y. On the ideals of commutative local rings, Kochi Journal of Mathematics, 2013, vol. 8, 13--17.